Advertisement

Recast layer mechanical properties of tool steel after electrical discharge machining with silicon powder in the dielectric

  • Cezar Augusto Oleinik Luzia
  • Carlos Augusto Henning Laurindo
  • Paulo César SoaresJr
  • Ricardo Diego Torres
  • Luciano Antonio Mendes
  • Fred Lacerda AmorimEmail author
ORIGINAL ARTICLE
  • 10 Downloads

Abstract

This work investigates the surface modification of quenched and tempered AISI H13 tool steel, widely used in mold-making industry, by sinking EDM with very fine Si powder suspended in the dielectric. The output variable resultant friction coefficients, wear resistance, and hardness of recast layer were measured for different input variables. The 1 A/2.8 μs and 2 A/3.2 μs and 2 A/6.4 μs combinations of discharge current and discharge duration, respectively, produced high hardness, low friction coefficient, and high wear-resistant recast layers, after the formation of martensitic phases in the recast layer as well as C0.17, Fe0.81, Si0.02 carbide. Layer thickness tends to grow with machining time. PMEDM process produced variable amounts of Si in the resultant recast layers, forming iron-silicon carbide phases. Lower wear rates were measured for the high-quality recast layers tested favoring the lifetime of this tool steel in abrasive applications. Martensitic phase formation in the recast layers helps explaining the increased hardness.

Keywords

AISI H13 tool steel Surface hardness Surface wear Powder mixed electrical discharge machining (PMEDM) Silicon powder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Schumacher B (2004) After 60 years of EDM the discharge process remains still disputed. J Mater Process Technol 149(1–3):376–338CrossRefGoogle Scholar
  2. 2.
    Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM (2005) Advancing EDM through fundamental insight into the process. CIRP Ann Manuf Technol 54(2):64–87CrossRefGoogle Scholar
  3. 3.
    Pawade MM, Banwait SS (2013) An exhaustive review of die sinking electrical discharge machining process and scope for future research. World Acad Sci Eng Technol 7:686–692Google Scholar
  4. 4.
    Kumar S, Singh R, Singh TP, Sethi BL (2009) Surface modification by electrical discharge machining : a review. J Mater Process Technol 209:3675–3687CrossRefGoogle Scholar
  5. 5.
    Simao J, Lee HG, Aspinwall DK, Dewes RC, Aspinwall EM (2003) Workpiece surface modification using electrical discharge machining. Int J Mach Tools Manuf 43:121–128CrossRefGoogle Scholar
  6. 6.
    Klocke F, Lung D, Antonoglou D, Thomaidis D (2009) The effects of powder suspended dielectrics on the thermal influenced zone by electro discharge machining with small discharge energies. J Mater Process Technol 149:191–197CrossRefGoogle Scholar
  7. 7.
    Peças P, Henriques E (2007) Effect of the powder concentration and dielectric flow in the surface morphology in electrical discharge machining with powder-mixed dielectric (PMD-EDM). Int J Adv Manuf Technol 37:1120–1132CrossRefGoogle Scholar
  8. 8.
    Luo YF (1997) The dependence of interspace discharge transitivity upon the gap debris in precision electrodischarge machining. J Mater Process Technol 68:127–137CrossRefGoogle Scholar
  9. 9.
    Zhao WS, Meng QG, Wang ZL (2002) The application of research on powder mixed EDM in rough machining. J Mater Process Technol 129:30–33CrossRefGoogle Scholar
  10. 10.
    Tzeng YF, Lee CY (2001) Effects of powder characteristics on electro discharge machining efficiency. Int J Adv Manuf Technol 17:586–592CrossRefGoogle Scholar
  11. 11.
    Jeswani ML (1981) Effects of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining. Wear 70:133–139CrossRefGoogle Scholar
  12. 12.
    Kansal HK, Singh S, Kumar P (2007) Technology and research developments in powder mixed electric discharge machining (PMEDM). J Mater Process Technol 184:32–41CrossRefGoogle Scholar
  13. 13.
    El-Hofy HA (2005) Advanced machining processes. McGraw-Hill, AlexandriaGoogle Scholar
  14. 14.
    Stevens L (1998) Improvement of surface quality in die-sinking EDM. PhD Thesis, Katholieke Universiteit Leuven, Leuven, BelgiumGoogle Scholar
  15. 15.
    Lascoe OD (1988) Handbook of fabrication processes. ASM International, Metal Park, Ohio, p 456Google Scholar
  16. 16.
    Kumar S, Batra U (2012) Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric. J Manuf Process 14:35–40CrossRefGoogle Scholar
  17. 17.
    Bajaj R, Tiwari AK, Dixit AR (2015) Current trends in electric discharge machining using micro and nano powder materials—a review. Mater Today Proc 2:3302–3307CrossRefGoogle Scholar
  18. 18.
    Amorim FL, Vitor AD, Soares P, Mendes LA (2017) Surface modification of tool steel by electrical discharge machining with molybdenum powder mixed in dielectric fluid. Int J Adv Manuf Technol 91:341–350CrossRefGoogle Scholar
  19. 19.
    Molinetti A, Amorim FL, Soares PC, Czelusniak T (2015) Surface modification of AISI H13 tool steel with silicon or manganese powders mixed to the dielectric in electrical discharge machining process. Int J Adv Manuf Technol 83:1057–1068CrossRefGoogle Scholar
  20. 20.
    Narumiya H, Mohri N, Saito N, Ootake H, Tsunekawa Y, Takawashi T, Kobayashi K (1989) EDM by powder suspended working fluid. Proceedings of the ISEM-9:5-8, Nagoya, JapanGoogle Scholar
  21. 21.
    Marashi H, Davoud MJ, Sarhana AAD, Hamdi M (2016) State of the art in powder mixed dielectric for EDM applications. Precis Eng 46:11–33CrossRefGoogle Scholar
  22. 22.
    Pecas P, Henriques E (2003) Influence of silicon powder-mixed dielectric on conventional electrical discharge machining. Int J Mach Tool Manu 43:1465–1471CrossRefGoogle Scholar
  23. 23.
    Wong YS, Lim LC, Rahuman I, Tee WM (1998) Near mirror-finish phenomenon in EDM using powder-mixed dielectric. J Mater Process Technol 79:30–40CrossRefGoogle Scholar
  24. 24.
    ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS (2013) ASTM G133 – 05 (2010) – Standard test method for linearly reciprocating ball-on-flat sliding wear. ASTM International, West ConshohockenGoogle Scholar
  25. 25.
    Ming QY, He LY (1995) Powder-suspension dielectric fluid for EDM. J Mater Process Technol 52:44–54CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Liu Y, Ji R, Cai B (2011) Study of the recast layer of a surface machined by sinking electrical discharge machining using water-in-oil emulsion as dielectric. Appl Surf Sci 257:5989–5997CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Cezar Augusto Oleinik Luzia
    • 1
  • Carlos Augusto Henning Laurindo
    • 1
  • Paulo César SoaresJr
    • 1
  • Ricardo Diego Torres
    • 1
  • Luciano Antonio Mendes
    • 2
  • Fred Lacerda Amorim
    • 1
    Email author
  1. 1.Mechanical Engineering Graduate Program – PPGEMPontifícia Universidade Católica do Paraná – PUCPRCuritibaBrazil
  2. 2.Systems and Production Engineering Graduate Program – PPGEPSPontifícia Universidade Católica do Paraná – PUCPRCuritibaBrazil

Personalised recommendations