Adaptive speed control for waterjet milling in pocket corners

  • Van Hung BuiEmail author
  • Patrick Gilles
  • Tarek Sultan
  • Guillaume Cohen
  • Walter Rubio


Milling thin titanium alloy workpieces using conventional manufacturing processes is a delicate operation. During machining, the cutting forces can deform the part, while resulting compressive stresses could actually enhance its mechanical properties. Nevertheless, when parts are both large in size and thin, deformation generated by machining will be incompatible with the geometrical specifications. From this perspective, abrasive waterjet milling offers a suitable alternative solution. Numerous works present the results relating to the depths milled, the surface characteristics and machining strategies when milling pockets. Such studies show that the change of direction when milling closed pockets generates defects arising from the distribution of the jet’s energy over the milled surface or the kinematics of the machine. When a pocket corner radius is imposed, changes of direction are made following circular arcs with a radius lower than the specified one. In the present paper, an analysis of the width milled during successive circular trajectories is presented and a predictive model for the depth is adopted. This model is then used to propose a milling method that allows both the imposed radius and tolerance on the pocket depth to be respected.


Machining Abrasive waterjet Milling strategy Titanium alloy Ti6Al4V 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Alberdi A, Rivero A, de Lacalle LNL (2011) Experimental study of the slot overlapping and tool path variation effect in abrasive waterjet milling. J Manuf Sci Eng 133(3):034502-1–034502-4CrossRefGoogle Scholar
  2. 2.
    Escobar-Palafox G, Gault RS, Ridgway K (2012) Characterisation of abrasive waterjet process for pocket milling in Inconel 718. Procedia CIRP 1:404–408CrossRefGoogle Scholar
  3. 3.
    Paul S, Hoogstrate AM, van Luttervelt CA, Kals HJJ (1998) An experimental investigation of rectangular pocket milling with abrasive water jet. J Mater Process Technol 73(1–3):179–188CrossRefGoogle Scholar
  4. 4.
    Goutham U, Hasu BS, Chakraverti G, Kanthababu M (2016) Experimental investigation of pocket milling on Inconel 825 using abrasive water jet machining. Int J Curr Eng Technol 6(1):295–302Google Scholar
  5. 5.
    Fowler G, Shipway PH, Pashby IR (2005) Abrasive water-jet controlled depth milling of Ti6Al4V alloy—an investigation of the role of jet–workpiece traverse speed and abrasive grit size on the characteristics of the milled material. J Mater Process Technol 161(3):407–414CrossRefGoogle Scholar
  6. 6.
    Srinivasu DS, Axinte DA, Shipway PH, Folkes J (2009) Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics. Int J Mach Tools Manuf 49(14):1077–1088CrossRefGoogle Scholar
  7. 7.
    Alberdi A, Rivero A, López de Lacalle LN, Etxeberria I, Suárez A (2010) Effect of process parameter on the kerf geometry in abrasive water jet milling. Int J Adv Manuf Technol 51(5):467–480CrossRefGoogle Scholar
  8. 8.
    Carrascal A, Alberdi A (2010) Evolutionary industrial physical model generation. Proceeding of the International Conference HAIS 2010, San Sebastian, Part I, p 327–334Google Scholar
  9. 9.
    Dittrich M, Dix M, Kuhl M, Palumbo B, Tagliaferri F (2014) Process analysis of water abrasive fine jet structuring of ceramic surfaces via design of experiment. Procedia CIRP 14:442–447CrossRefGoogle Scholar
  10. 10.
    Nguyen T, Wang J, Li W (2015) Process models for controlled-depth abrasive waterjet milling of amorphous glasses. Int J Adv Manuf Technol 77(5):1177–1189CrossRefGoogle Scholar
  11. 11.
    Boud F, Loo LF, Kinnell PK (2014) The impact of plain waterjet machining on the surface integrity of aluminium 7475. Procedia CIRP 13:382–386CrossRefGoogle Scholar
  12. 12.
    Kowsari K, Nouraeia H, Samarehb B, Papini M, Spelt JK (2016) CFD-aided prediction of the shape of abrasive slurry jet micro-machined channels in sintered ceramics. Ceram Int 42(6):7030–7042CrossRefGoogle Scholar
  13. 13.
    Tamannaee N, Spelt JK, Papini M (2016) Abrasive slurry jet micro-machining of edges, planar areas and transitional slopes in a talc-filled co-polymer. Precis Eng 43:52–62CrossRefGoogle Scholar
  14. 14.
    Anwar S, Axinte DA, Becker AA (2013) Finite element modelling of overlapping abrasive waterjet milled footprints. Wear 303(1–2):426–436CrossRefGoogle Scholar
  15. 15.
    Bui VH, Gilles P, Sultan T, Cohen G, Rubio W (2017) A new cutting depth model with rapid calibration in abrasive water jet machining of titanium alloy. Int J Adv Manuf Technol 93(5–8):1499–1512CrossRefGoogle Scholar
  16. 16.
    Finnie I (1960) Erosion of surface by solid particles. Wear 3(2):87–103CrossRefGoogle Scholar
  17. 17.
    Bitter JGA (1963) A study of erosion phenomena—part 2. Wear 6(3):169–190CrossRefGoogle Scholar
  18. 18.
    Hashish M (1987) Milling with abrasive-waterjets: a preliminary investigation. In Proceeding of the fourth U.S. waterjet conference, p 1–20Google Scholar
  19. 19.
    Hlaváč LM, Strnadel B, Kaličinský J, Gembalová L (2012) The model of product distortion in AWJ cutting. Int J Adv Manuf Technol 62(1–4):157–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Clément Ader (ICA), CNRS-INSA-ISAE-Mines Albi-UPSUniversité de Toulouse, FranceToulouseFrance

Personalised recommendations