Advertisement

Deposition of ferromagnetic particles using a magnetic assisted cold spray process

  • Antonello Astarita
  • Giovanni Ausanio
  • Luca Boccarusso
  • Umberto PriscoEmail author
  • Antonio Viscusi
ORIGINAL ARTICLE
  • 39 Downloads

Abstract

An innovative cold spray method for the deposition of ferromagnetic particles is presented. A magnetic field is used to magnetize and then accelerate the sprayed particles towards the substrate. In addition, the magnetic attraction focuses the trajectories of the particles so that their spreading is reduced. This magnetic assisted cold spray achieves higher deposition efficiencies in comparison with the conventional process. The quality of the produced coatings, as regard their porosity, is increased too. The proposed method shows promises of being a useful tool to expand the industrial applications of cold spray.

Keywords

Cold spray Magnetic field Deposition efficiency Porosity Coating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors acknowledge Sophia High Tech, in particular Domenico Pace and Gioacchino Maresca, for supporting the experimental activities.

References

  1. 1.
    Sova A, Doubenskaia M, Petrovskiy P, Smurov I (2018) Visualization of particle jet in cold spray by infrared camera: feasibility tests. Int J Adv Manuf Technol 95(5):3057–3063.  https://doi.org/10.1007/s00170-017-1435-2 CrossRefGoogle Scholar
  2. 2.
    Ortega F, Sova A, Monzón MD, Marrero MD, Benítez AN, Bertrand P (2015) Combination of electroforming and cold gas dynamic spray for fabrication of rotational moulds: feasibility study. Int J Adv Manuf Technol 76(5):1243–1251.  https://doi.org/10.1007/s00170-014-6331-4 CrossRefGoogle Scholar
  3. 3.
    Petrovskiy P, Sova A, Doubenskaia M, Smurov I (2019) Influence of hot isostatic pressing on structure and properties of titanium cold-spray deposits. Int J Adv Manuf Technol.  https://doi.org/10.1007/s00170-018-03233-5
  4. 4.
    Papyrin A, Kosarev V, Klinkov S, Alkhimov A, Fomin VM (2007) Cold spray technology. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Prisco U (2015) Size-dependent distributions of particle velocity and temperature atimpact in the cold-gas dynamic-spray process. J Mater Process Technol 216:302–314.  https://doi.org/10.1016/j.jmatprotec.2014.09.013 CrossRefGoogle Scholar
  6. 6.
    Jen T-C, Pan L, Li L, Chen Q, Cui W (2006) The acceleration of charged nano-particles in gas stream of supersonic de-Laval-type nozzle coupled with static electric field. Appl Therm Eng 26(5-6):613–621.  https://doi.org/10.1016/j.applthermaleng.2005.07.033 CrossRefGoogle Scholar
  7. 7.
    Gan Z, Liu H, Li S, He X, Yu G (2017) Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron. Int J Heat Mass Transf 111:709–722.  https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.055 CrossRefGoogle Scholar
  8. 8.
    Gan Z, Yu G, He X, Li S (2017) Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. Int J Heat Mass Transf 104:28–38.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.049 CrossRefGoogle Scholar
  9. 9.
    Gan Z, Yu G, He X, Li S (2017) Surface-active element transport and its effect on liquid metal flow in laser-assisted additive manufacturing. International Communications in Heat and Mass Transfer 86:206–214.  https://doi.org/10.1016/j.icheatmasstransfer.2017.06.007 CrossRefGoogle Scholar
  10. 10.
    Alhulaifi AS, Buck GA (2014) A simplified approach for the determination of critical velocity for cold spray processes. J Therm Spray Technol 23(8):1259–1269.  https://doi.org/10.1007/s11666-014-0128-8 CrossRefGoogle Scholar
  11. 11.
    Grujicic M, Saylor JR, Beasley DE, DeRosset WS, Helfritch D (2003) Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Appl Surf Sci 219(3-4):211–227.  https://doi.org/10.1016/S0169-4332(03)00643-3 CrossRefGoogle Scholar
  12. 12.
    Chen C, Xie Y, H R, Deng S, Ren Z, Liao H (2018) On the role of oxide film’s cleaning effect into the metallurgical bonding during cold spray. Mater Lett 201:199–202.  https://doi.org/10.1016/j.matlet.2017.09.024 CrossRefGoogle Scholar
  13. 13.
    Xie Y, Yin S, Chen C, Planche M-P, Liao H, Lupoi R (2016) New insights into the coating/substrate interfacial bonding mechanism in cold spray. Scr Mater 125:1–4.  https://doi.org/10.1016/j.scriptamat.2016.07.024 CrossRefGoogle Scholar
  14. 14.
    Wu J, Fang H, Yoon S, Kim H, Lee C (2005) Measurement of particle velocity and characterization of deposition in aluminum alloy kinetic spraying process. Appl Surf Sci 252(5):1368–1377.  https://doi.org/10.1016/j.apsusc.2005.02.108 CrossRefGoogle Scholar
  15. 15.
    Assadi H, Schmidt T, Richter H, Kliemann J-O, Binder K, Gärtner F, Klassen T, Kreye H (2011) On parameter selection in cold spraying. J Therm Spray Technol 20(6):1161–1176.  https://doi.org/10.1007/s11666-011-9662-9 CrossRefGoogle Scholar
  16. 16.
    Goyal T, Walia RS, Sidhu TS (2013) Multi-response optimization of low-pressure cold-sprayed coatings through Taguchi method and utility concept. Int J Adv Manuf Technol 64(5):903–914.  https://doi.org/10.1007/s00170-012-4049-8 CrossRefGoogle Scholar
  17. 17.
    Klinkov SV, Kosarev VF (2006) Measurements of cold spray deposition efficiency. J Therm Spray Technol 15(3):364–371.  https://doi.org/10.1361/105996306X124365 CrossRefGoogle Scholar
  18. 18.
    Wang F (2017) Deposition characteristic of Al particles on Mg alloy micro-channel substrate by cold spray. Int J Adv Manuf Technol 91(1):791–802.  https://doi.org/10.1007/s00170-016-9807-6 CrossRefGoogle Scholar
  19. 19.
    Meyer M, Lupoi R (2015) An analysis of the particulate flow in cold spray nozzles. Mech Sci 6:127–136.  https://doi.org/10.5194/ms-6-127-2015 CrossRefGoogle Scholar
  20. 20.
    Gilmore DL, Dykhuizen RC, Neiser RA, Roemer TJ, Smith MF (1999) Particle velocity and deposition efficiency in the cold spray process. J Therm Spray Technol 8(4):576–582.  https://doi.org/10.1361/105996399770350278 CrossRefGoogle Scholar
  21. 21.
    Lima RS, Kucuk A, Berndt CC, Karthikeyan J, Kay CM, Lindemann J (2002) Deposition efficiency, mechanical properties and coating roughness in cold-sprayed titanium. J Mater Sci Lett 21(21):1687–1689.  https://doi.org/10.1023/A:1020833011448 CrossRefGoogle Scholar
  22. 22.
    Huang G, Wang H, Li X, Xing L, Zhou J (2018) Deposition efficiency of low pressure cold sprayed aluminum coating. Mater Manuf Process 33(10):1100–1106.  https://doi.org/10.1080/10426914.2017.1415443 CrossRefGoogle Scholar
  23. 23.
    Schmidt T, Gaertner F, Kreye H (2006) New developments in cold spray based on higher gas and particle temperatures. J Therm Spray Technol 15(4):488–494.  https://doi.org/10.1361/105996306X147144 CrossRefGoogle Scholar
  24. 24.
    Adachi S, Ueda N (2017) Effect of cold-spray conditions using a nitrogen propellant gas on AISI 316L stainless steel-coating microstructures. Coatings 7(7):87CrossRefGoogle Scholar
  25. 25.
    Yeom H, Dabney T, Johnson G, Maier B, Lenling M, Sridharan K (2018) Improving deposition efficiency in cold spraying chromium coatings by powder annealing. Int J Adv Manuf Technol 100:1373–1382.  https://doi.org/10.1007/s00170-018-2784-1 CrossRefGoogle Scholar
  26. 26.
    Sova A, Smurov I, Doubenskaia M, Petrovskiy P (2018) Deposition of aluminum powder by cold spray micronozzle. Int J Adv Manuf Technol 95(9):3745–3752.  https://doi.org/10.1007/s00170-017-1443-2 CrossRefGoogle Scholar
  27. 27.
    Fernandez R, Jodoin B (2018) Cold spray aluminum–alumina cermet coatings: effect of alumina content. J Therm Spray Technol 27(4):603–623.  https://doi.org/10.1007/s11666-018-0702-6 CrossRefGoogle Scholar
  28. 28.
    Takana H, Ogawa K, Shoji T, Nishiyama H (2008) Computational simulation of cold spray process assisted by electrostatic force. Powder Technol 185(2):116–123.  https://doi.org/10.1016/j.powtec.2007.10.005 CrossRefGoogle Scholar
  29. 29.
    Singh H, Sidhu TS, Kalsi SBS, Karthikeyan J (2016) Evolution of the microstructure by high velocity impacts of particles by cold spray. Mater Manuf Process 31(11):1514–1520.  https://doi.org/10.1080/10426914.2014.994766 CrossRefGoogle Scholar
  30. 30.
    Prisco U, Squillace A, Astarita A, Carrino L (2018) Morphology of titanium coatings deposited through single pass cold spraying. Mater Manuf Process 33(2):123–129.  https://doi.org/10.1080/10426914.2016.1198035 CrossRefGoogle Scholar
  31. 31.
    Haus HA, Melcher JR (1989) Electromagnetic fields and energy. Prentice Hall, Englewood CliffsGoogle Scholar
  32. 32.
    Camacho JM, Sosa V (2013) Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. Revista mexicana de física E 59:8–17MathSciNetGoogle Scholar
  33. 33.
    Smolkin MR, Smolkin RD (2006) Calculation and analysis of the magnetic force acting on a particle in the magnetic field of separator. Analysis of the equations used in the magnetic methods of separation. IEEE Trans Magn 42(11):3682–3693.  https://doi.org/10.1109/TMAG.2006.880688 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Antonello Astarita
    • 1
  • Giovanni Ausanio
    • 2
  • Luca Boccarusso
    • 1
  • Umberto Prisco
    • 1
    Email author
  • Antonio Viscusi
    • 1
  1. 1.Department of Chemical, Materials and Production EngineeringUniversity of Napoli Federico IINaplesItaly
  2. 2.CNR-SPIN, Department of Physics ‘E. Pancini’University of Napoli Federico IINaplesItaly

Personalised recommendations