Advertisement

Numerical optimization of variable blank holder force trajectory and blank shape for twist springback reduction using sequential approximate optimization

  • Satoshi KitayamaEmail author
  • Ryoto Ishizuki
  • Masaki Yokoyaka
  • Kiichiro Kawamoto
  • Shinji Natsume
  • Kazuaki Adachi
  • Takahiro Noguchi
  • Toshio Ohtani
ORIGINAL ARTICLE
  • 19 Downloads

Abstract

This paper proposes an approach for twist springback reduction using variable blank holder force (VBHF) trajectory that the blank holder force (BHF) varies through the stroke. In addition, the blank shape is optimized. Therefore, design optimization of VBHF trajectory and blank shape for twist springback reduction is performed. Springback of U-shaped product is a simple deformation, whereas the one of S-rail-shaped product shows more complicated behavior due to twisting. As the result, compared with the springback of U-shaped product, it is difficult to evaluate the twist springback. A novel evaluation method for the twist springback is proposed, and the optimal VBHF trajectory and blank shape for the twist springback reduction are determined under several design constraints. Numerical simulation of the S-rail-shaped product is so intensive that response surface approach is valid. In particular, a sequential approximate optimization that the response surface is repeatedly constructed and optimized is used to determine the optimal VBHF and blank shape. Through numerical result, the validation of the proposed approach is examined.

Keywords

Twist springback reduction Variable blank holder force trajectory Blank shape Sequential approximate optimization Numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Viswanathan V, Kinsey B, Cao J (2003) Experimental implementation of neural network springback control for sheet metal forming. J Eng Mater Technol 125:141–147CrossRefGoogle Scholar
  2. 2.
    Chen P, Koc M, Wenner ML (2008) Experimental investigation of springback variation in forming of high strength steels. J Manuf Sci Eng 130:041006–1-041006-9CrossRefGoogle Scholar
  3. 3.
    Chongthairungruang B, Uthaisangsuk V, Suranuntchai S, Jirathearanat S (2013) Springback prediction in sheet metal forming of high strength steels. Mater Des 50:253–266CrossRefGoogle Scholar
  4. 4.
    Komgrit L, Hamasaki H, Hino R, Yoshida F (2016) Elimination of springback of high-strength steel sheet by using additional bending with counter punch. J Mater Process Technol 229:199–206CrossRefGoogle Scholar
  5. 5.
    Lin ZQ, Wang WR, Chen GL (2007) A new strategy to optimize variable blank holder force towards improving the forming limits of aluminum sheet metal forming. J Mater Process Technol 183:339–346CrossRefGoogle Scholar
  6. 6.
    Kitayama S, Saikyo M, Kawamoto K, Yamamichi K (2015) Multi-objective optimization of blank shape for deep drawing with variable blank holder force via sequential approximate optimization. Struct Multidiscip Optim 52:1001–1012MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kitayama S, Koyama H, Kawamoto K, Noda T, Yamamichi K, Miyasaka T (2017) Numerical and experimental case study on simultaneous optimization of blank shape and variable blank holder force trajectory in deep drawing. Struct Multidiscip Optim 55:347–359CrossRefGoogle Scholar
  8. 8.
    Kitayama S, Koyama H, Kawamoto K, Miyasaka T, Yamamichi K, Noda T (2017) Optimization of blank shape and segmented variable blank holder force trajectories in deep drawing using sequential approximate optimization. Int J Adv Manuf Technol 91:1809–1821CrossRefGoogle Scholar
  9. 9.
    Zheng LH, Wang ZJ, Liu ZG, Song H (2018) Formability and performance of 6K21-T4 aluminum automobile panels in VPF under variable blank holder force. Int J Adv Manuf Technol 94:571–584CrossRefGoogle Scholar
  10. 10.
    Sunseri M, Cao J, Karafillis AP, Boyce MC (1996) Accommodation of springback error in channel forming using active binder force control: numerical simulations and experiments. J Eng Mater Technol 118:426–435CrossRefGoogle Scholar
  11. 11.
    Liu G, Lin Z, Xu W, Bao Y (2002) Variable blank holder force in U-shaped part forming for eliminating springback error. J Mater Process Technol 120:259–264CrossRefGoogle Scholar
  12. 12.
    Jakumeit J, Herdy M, Nitsche M (2005) Parameter optimization of the sheet metal forming process using an iterative parallel Kriging algorithm. Struct Multidiscip Optim 29:498–507CrossRefGoogle Scholar
  13. 13.
    Jiang C, Han X, Liu GR, Li GY (2007) The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient. J Mater Process Technol 182:262–267CrossRefGoogle Scholar
  14. 14.
    Song JH, Huh H, Kim SH (2007) Stress-based springback reduction of a channel shaped auto-body part with high-strength steel using response surface methodology. J Eng Mater Technol 129:397–406CrossRefGoogle Scholar
  15. 15.
    Kitayama S, Huang S, Yamazaki K (2013) Optimization of variable blank holder force trajectory for springback reduction via sequential approximate optimization with radial basis function network. Struct Multidiscip Optim 47:289–300CrossRefGoogle Scholar
  16. 16.
    Lorenzo RD, Ingarao G, Micari F, Chinesta F (2009) A pareto-optimal design approach for simultaneous control of thinning and springback in stamping process. Int J Mater Form 2:801–804CrossRefGoogle Scholar
  17. 17.
    Ingarao G, Lorenzo RD, Micari F (2009) Analysis of stamping performances of dual phase steels: a multi-objective approach to reduce springback and thinning failure. Mater Des 30:4421–4433CrossRefGoogle Scholar
  18. 18.
    Marretta L, Ingarao G, Lorenzo RD (2010) Design of sheet stamping operations to control springback and thinning: a multi-objective stochastic optimization approach. Int J Mech Sci 52:914–927CrossRefGoogle Scholar
  19. 19.
    Li H, Sun G, Li G, Gong Z, Liu D, Li Q (2011) On twist springback in advanced high-strength steels. Mater Des 32:3272–3279CrossRefGoogle Scholar
  20. 20.
    Tang L, Wang H, Li G (2013) Advanced high strength steel springback optimization by projection-based heuristic global search algorithm. Mater Des 43:426–437CrossRefGoogle Scholar
  21. 21.
    Li H (2013) Reduction of springback by intelligent sampling-based LSSVR metamodel-based optimization. Int J Mater Form 6:103–114CrossRefGoogle Scholar
  22. 22.
    Kishor N, Kumar DR (2002) Optimization of initial blank shape to minimize earing in deep drawing using finite element method. J Mater Process Technol 130(131):20–30CrossRefGoogle Scholar
  23. 23.
    Vafaeesefat A (2011) Finite element simulation for blank shape optimization in sheet metal forming. Mater Manuf Process 26:93–98CrossRefGoogle Scholar
  24. 24.
    Hino R, Yoshida F, Toropov VV (2006) Optimum blank design for sheet metal forming based on the interaction of high- and low-fidelity FE models. Arch Appl Mech 75(10):679–691CrossRefzbMATHGoogle Scholar
  25. 25.
    Naceur H, Ben-Elechi S, Batoz JL, Knopf-Lenoir C (2008) Response surface methodology for the rapid design of aluminum sheet metal forming parameters. Mater Des 29:781–790CrossRefGoogle Scholar
  26. 26.
    Chamekh A, BenRhaiem S, Khaterchi H, BelHadjSalah H, Hambli R (2010) An optimization strategy based on a metamodel applied for the prediction of the initial blank shape in a deep drawing process. Int J Adv Manuf Technol 50:93–100CrossRefGoogle Scholar
  27. 27.
    Liu Y, Chen W, Ding L, Wang X (2013) Response surface methodology based on support vector regression for polygon blank shape optimization design. Int J Adv Manuf Technol 66:1397–1405CrossRefGoogle Scholar
  28. 28.
    Palaniswamy H, Ngaile G, Altan T (2004) Optimization of blank dimensions to reduce springback in the flexforming process. J Mater Process Technol 146:28–34CrossRefGoogle Scholar
  29. 29.
    Bonte MHA, van den Boogaard AH, Huetink J (2008) An optimization strategy for industrial metal forming processes. Struct Multidiscip Optim 35:571–586CrossRefGoogle Scholar
  30. 30.
    Kitayama S, Arakawa M, Yamazaki K (2011) Sequential approximate optimization using radial basis function network for engineering optimization. Optim Eng 12(4):535–557CrossRefzbMATHGoogle Scholar
  31. 31.
    Kitayama S, Srirat J, Arakawa M, Yamazaki K (2011) Sequential approximate multi-objective optimization using radial basis function network. Struct Multidiscip Optim 48:501–515MathSciNetCrossRefGoogle Scholar
  32. 32.
    Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling, WileyGoogle Scholar
  33. 33.
    Tozawa Y (1965) Theoretical analysis on springback of thin plate. J Jpn Soc Mech Eng 68(559):1090–1097 (in Japanese).Google Scholar
  34. 34.
    Panda SK, Sreenivasan N, Kuntz ML, Zhou Y (2008) Numerical simulations and experimental results of tensile test behavior of laser butt welded DP980 steels. J Eng Mater Technol 130:041003–1-041003-9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Satoshi Kitayama
    • 1
    Email author
  • Ryoto Ishizuki
    • 2
  • Masaki Yokoyaka
    • 2
  • Kiichiro Kawamoto
    • 3
  • Shinji Natsume
    • 4
  • Kazuaki Adachi
    • 4
  • Takahiro Noguchi
    • 4
  • Toshio Ohtani
    • 4
  1. 1.Kanazawa UniversityKanazawaJapan
  2. 2.Graduate School of Natural Science & TechnologyKanazawa UniversityKanazawaJapan
  3. 3.Komatsu Industries Corp.KanazawaJapan
  4. 4.Komatsu Ltd.OsakaJapan

Personalised recommendations