Effect of welding parameters on functionality of dissimilar laser-welded NiTi superelastic (SE) to shape memory effect (SME) wires

  • Mehrshad MehrpouyaEmail author
  • Annamaria Gisario
  • Giovanni Battista Broggiato
  • Michela Puopolo
  • Silvia Vesco
  • Massimiliano Barletta


Numerous are the applications of NiTi shape memory alloys (SMA) in smart designs and structures. Many researchers and manufacturers investigate laser welding and joining process to integrate the functionalities of NiTi alloys, including superelasticity (SE) and shape memory effect (SME). Accordingly, this integration would provide better flexibility to that class of materials which can be applied in the development of multi-functional systems and components. The present study investigates the laser welding of dissimilar NiTi wires, including both SE and SME wires, using a high-power diode laser (HPDL). The resulting welded joints were investigated using various mechanical and microstructural analysis including optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), differential scanning calorimetry (DSC), and tensile and micro-hardness tests. Various operational parameters, that is, laser power and speed, were investigated to obtain high-quality welded joints, preserve the transformation temperature of the welded zone, and, subsequently, minimize the influence of the welding process on the functionality of the joined materials.

Graphical Abstract

Laser welding process of NiTi (SE) to NiTi (SME).


Dissimilar laser welding Shape memory alloys NiTi Superelastic Shape memory effect HPDL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Dr. Elisa Pizzi for her assistance in the DSC test. Also, the authors would like to acknowledge Mr. Riccardo D’Amico and Mr. Attilio Panella for their contributions in the experimental tests.


  1. 1.
    Sathiya P, Ramesh T (2017) Experimental investigation and characterization of laser welded NiTinol shape memory alloys. J Manuf Process 25:253–261CrossRefGoogle Scholar
  2. 2.
    Zeng Z, Yang M, Oliveira JP, Song D, Peng B (2016) Laser welding of NiTi shape memory alloy wires and tubes for multi-functional design applications. Smart Mater Struct 25(8):085001CrossRefGoogle Scholar
  3. 3.
    Elahinia MH (2016) Shape memory alloy actuators: design, fabrication, and experimental evaluation. John Wiley & Sons, ChichesterGoogle Scholar
  4. 4.
    Mehrpouya M, Cheraghi Bidsorkhi H (2016) MEMS applications of NiTi based shape memory alloys: a review. Micro and Nanosystems 8(2):79–91CrossRefGoogle Scholar
  5. 5.
    Mehrpouya M, Shahedin AM, Daood Salman Dawood S, Kamal Ariffin A (2017) An investigation on the optimum machinability of NiTi based shape memory alloy. Mater Manuf Process 32(13):1497–1504Google Scholar
  6. 6.
    Mehrpouya M, Gisario A, Elahinia M (2018) Laser welding of NiTi shape memory alloy: a review. J Manuf Process 2018(31):162–186CrossRefGoogle Scholar
  7. 7.
    Falvo A, Furgiuele F, Maletta C (2005) Laser welding of a NiTi alloy: Mechanical and shape memory behaviour. Mater Sci Eng A 412(1):235–240CrossRefGoogle Scholar
  8. 8.
    Tam B, Khan M, Zhou Y (2011) Mechanical and functional properties of laser-welded Ti-55.8 Wt Pct Ni nitinol wires. Metall Mater Trans A 42(8):2166–2175CrossRefGoogle Scholar
  9. 9.
    Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57(5):911–946CrossRefGoogle Scholar
  10. 10.
    Zamani N, Khamesee MB, Khan MI (2017) Novel laser processed shape memory alloy actuator design with an embedded strain gauge sensor using dual resistance measurements. Part I: Fabrication and model-based position estimation. Sensors Actuators A Phys 263:234–245CrossRefGoogle Scholar
  11. 11.
    Engeberg ED, Dilibal S, Vatani M, Choi JW, Lavery J (2015) Anthropomorphic finger antagonistically actuated by SMA plates, Bioinspir Biomim 10(5):056002Google Scholar
  12. 12.
    Gisario A, Mehrpouya M, Venettacci S, Mohammadzadeh A, Barletta M (2016) LaserOrigami (LO) of three-dimensional (3D) components: experimental analysis and numerical modelling. J Manuf Process 23:242–248CrossRefGoogle Scholar
  13. 13.
    Gisario A, Veniali F, Barletta M, Tagliaferri V, Vesco S (2017) Laser transmission welding of poly (ethylene terephthalate) and biodegradable poly (ethylene terephthalate)–based blends. Opt Lasers Eng 90:110–118CrossRefGoogle Scholar
  14. 14.
    Oliveira J et al (2016) Effect of laser welding parameters on the austenite and martensite phase fractions of NiTi. Mater Charact 119:148–151CrossRefGoogle Scholar
  15. 15.
    Mehrpouya M, Lavvafi H, Darafsheh A (2018) Microstructural characterization and mechanical reliability of laser-machined structures. In: Lawrence J (ed) Advances in laser materials processing, 2nd edn, Woodhead Publishing, Sawston, pp 731–761Google Scholar
  16. 16.
    Gong W-h, Chen Y-h, Ke L-m (2011) Microstructure and properties of laser micro welded joint of TiNi shape memory alloy. Trans Nonferrous Metals Soc China 21(9):2044–2048CrossRefGoogle Scholar
  17. 17.
    Chatterjee S, Abinandanan T, Chattopadhyay K (2006) Microstructure development during dissimilar welding: case of laser welding of Ti with Ni involving intermetallic phase formation. J Mater Sci 41(3):643–652CrossRefGoogle Scholar
  18. 18.
    Bram M, Ahmad-Khanlou A, Heckmann A, Fuchs B, Buchkremer HP, Stöver D (2002) Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Mater Sci Eng A 337(1-2):254–263CrossRefGoogle Scholar
  19. 19.
    Wang W, Yang X, Li H, Cong F, Liu Y (2014) Effect of laser welding parameters on formation of NiTi shape memory alloy welds. Adv Mater Sci Eng 2014:1–8Google Scholar
  20. 20.
    Yan X, Yang D, Qi M (2006) Rotating–bending fatigue of a laser-welded superelastic NiTi alloy wire. Mater Charact 57(1):58–63CrossRefGoogle Scholar
  21. 21.
    Dong P, Li H, Wang W, Zhou J (2018) Microstructural characterization of laser micro-welded Nitinol wires. Mater Charact 135:40–45CrossRefGoogle Scholar
  22. 22.
    Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRefGoogle Scholar
  23. 23.
    Adharapurapu R, Vecchio K (2007) Superelasticity in a new bioimplant material: Ni-rich 55NiTi alloy. Exp Mech 47(3):365–371CrossRefGoogle Scholar
  24. 24.
    Zhang X, Sehitoglu H (2004) Crystallography of the B2→ R→ B19′ phase transformations in NiTi. Mater Sci Eng A 374(1-2):292–302CrossRefGoogle Scholar
  25. 25.
    Chan C, Man H, Yue T (2012) Effect of post-weld heat-treatment on the oxide film and corrosion behaviour of laser-welded shape memory NiTi wires. Corros Sci 56:158–167CrossRefGoogle Scholar
  26. 26.
    Mehrpouya M, Gisario A, Brotzu A, Natali S (2018) Laser welding of NiTi shape memory sheets using a diode laser. Opt Laser Technol 108:142–149CrossRefGoogle Scholar
  27. 27.
    Oliveira J et al (2016) On the mechanisms for martensite formation in YAG laser welded austenitic NiTi. Shape memory and superelasticity 2(1):114–120CrossRefGoogle Scholar
  28. 28.
    Hornbuckle B, Noebe R, Thompson G (2015) Influence of Hf solute additions on the precipitation and hardenability in Ni-rich NiTi alloys. J Alloys Compd 640:449–454CrossRefGoogle Scholar
  29. 29.
    Pequegnat A, Michael A, Wang J, Lian K, Zhou Y, Khan MI (2015) Surface characterizations of laser modified biomedical grade NiTi shape memory alloys. Mater Sci Eng C 50:367–378CrossRefGoogle Scholar
  30. 30.
    Mirshekari G et al (2015) Microstructure, cyclic deformation and corrosion behavior of laser welded NiTi shape memory wires. J Mater Eng Perform 24(9):3356–3364CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Mehrshad Mehrpouya
    • 1
    Email author
  • Annamaria Gisario
    • 2
  • Giovanni Battista Broggiato
    • 2
  • Michela Puopolo
    • 1
  • Silvia Vesco
    • 3
  • Massimiliano Barletta
    • 1
  1. 1.Dipartimento di IngegneriaUniversità degli Studi Roma TreRomaItaly
  2. 2.Dipartimento di Ingegneria Meccanica ed AerospazialeSapienza Università degli Studi di RomaRomaItaly
  3. 3.Dipartimento di Ingegneria dell’ImpresaUniversità degli Studi di Roma Tor VergataRomaItaly

Personalised recommendations