A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing

  • N. J. WilkinsonEmail author
  • M. A. A. Smith
  • R. W. Kay
  • R. A. Harris
Open Access


Aerosol Jet Printing (AJP) is an emerging contactless direct write approach aimed at the production of fine features on a wide range of substrates. Originally developed for the manufacture of electronic circuitry, the technology has been explored for a range of applications, including, active and passive electronic components, actuators, sensors, as well as a variety of selective chemical and biological responses. Freeform deposition, coupled with a relatively large stand-off distance, is enabling researchers to produce devices with increased geometric complexity compared to conventional manufacturing or more commonly used direct write approaches. Wide material compatibility, high resolution and independence of orientation have provided novelty in a number of applications when AJP is conducted as a digitally driven approach for integrated manufacture. This overview of the technology will summarise the underlying principles of AJP, review applications of the technology and discuss the hurdles to more widespread industry adoption. Finally, this paper will hypothesise where gains may be realised through this assistive manufacturing process.


Aerosol jet Hybrid manufacture Micro-manufacturing Printed electronics Direct write 



We kindly acknowledge our research funding from the Engineering and Physical Sciences Research Council. This includes a number of our activities which incorporate AJP as a Hybrid Manufacturing Process, namely grants EP/L02067X/2, EP/M026388/1, and EP/P027687/1.


  1. 1.
    Mahajan A, Frisbie CD, Francis LF (2013) Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines. ACS Appl Mater Interfaces 5:4856–4864. CrossRefGoogle Scholar
  2. 2.
    Goth C, Putzo S, Franke J (2011) Aerosol jet printing on rapid prototyping materials for fine pitch electronic applications. In: 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE, pp 1211–1216Google Scholar
  3. 3.
    Seifert T, Sowade E, Roscher F, Wiemer M, Gessner T, Baumann RR (2015) Additive manufacturing technologies compared: morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind Eng Chem Res 54:769–779. CrossRefGoogle Scholar
  4. 4.
    Meruga JM, Baride A, Cross W, Kellar JJ, May PS (2014) Red-green-blue printing using luminescence-upconversion inks. J Mater Chem C 2:2221. CrossRefGoogle Scholar
  5. 5.
    Kim SH, Hong K, Lee KH, Frisbie CD (2013) Performance and stability of aerosol-jet-printed electrolyte-gated transistors based on poly(3-hexylthiophene). ACS Appl Mater Interfaces 5:6580–6585. CrossRefGoogle Scholar
  6. 6.
    Secor EB, Hersam MC (2015) Emerging carbon and post-carbon nanomaterial inks for printed electronics. J Phys Chem Lett 6:620–626. CrossRefGoogle Scholar
  7. 7.
    Obata K, Klug U, Koch J et al (2014) Hybrid micro-stereo-lithography by means of aerosol jet printing technology. J Laser Micro Nanoeng 9:242–247. CrossRefGoogle Scholar
  8. 8.
    Obata K, Schonewille A, Slobin S, Hohnholz A, Unger C, Koch J, Suttmann O, Overmeyer L (2017) Hybrid 2D patterning using UV laser direct writing and aerosol jet printing of UV curable polydimethylsiloxane. Appl Phys Lett 111:121903. CrossRefGoogle Scholar
  9. 9.
    Saleh MS, Hu C, Panat R (2017) Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing. Sci Adv 3:e1601986. CrossRefGoogle Scholar
  10. 10.
    Paulsen JA, Renn M, Christenson K, Plourde R (2012) Printing conformal electronics on 3D structures with aerosol jet technology. In: FIIW 2012—2012 Future of Instrumentation International Workshop Proceedings. pp 47–50Google Scholar
  11. 11.
    Maher M, Smith A, Margiotta J (2014) A synopsis of the Defense Advanced Research Projects Agency (DARPA) investment in additive manufacture and what challenges remain. pp 897002–897009Google Scholar
  12. 12.
    Marquez GJ, Renn MJ, Miller WD (2001) Aerosol-based direct-write of biological materials for biomedical applications. MRS Proc 698:Q5.2.1. CrossRefGoogle Scholar
  13. 13.
    Tait JG, Witkowska E, Hirade M, Ke TH, Malinowski PE, Steudel S, Adachi C, Heremans P (2015) Uniform aerosol jet printed polymer lines with 30 ??m width for 140 ppi resolution RGB organic light emitting diodes. Org Electron physics, Mater Appl 22:40–43. CrossRefGoogle Scholar
  14. 14.
    Optomec aerosol jet videos. Accessed 19 Mar 2018
  15. 15.
    Gupta AA, Bolduc A, Cloutier SG, Izquierdo R (2016) Aerosol jet printing for printed electronics rapid prototyping. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 866–869Google Scholar
  16. 16.
    Folgar CE, Suchicital C, Priya S (2011) Solution-based aerosol deposition process for synthesis of multilayer structures. Mater Lett 65:1302–1307. CrossRefGoogle Scholar
  17. 17.
    Grunwald I, Groth E, Wirth I, Schumacher J, Maiwald M, Zoellmer V, Busse M (2010) Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies. Biofabrication 2:014106. CrossRefGoogle Scholar
  18. 18.
    Cai F, Chang Y-H, Wang K, Zhang C, Wang B, Papapolymerou J (2016) Low-loss 3-D multilayer transmission lines and interconnects fabricated by additive manufacturing technologies. IEEE Trans Microw Theory Tech 64:3208–3216. CrossRefGoogle Scholar
  19. 19.
    Huang Q, Zhu Y (2019) Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications. Adv Mater Technol 0:1800546. CrossRefGoogle Scholar
  20. 20.
    Optomec (2017) Aerosol jet technology for 3D printed electronics. Accessed 01 April 2019
  21. 21.
    May KR (1973) The collison nebulizer: description, performance and application. J Aerosol Sci 4:235–243. CrossRefGoogle Scholar
  22. 22.
    Goth C, Putzo S, Franke J (2011) Aerosol jet printing on rapid prototyping materials for fine pitch electronic applications. In: Proceedings—Electronic Components and Technology Conference. pp 1211–1216Google Scholar
  23. 23.
    Smith M, Choi YS, Boughey C, Kar-Narayan S (2017) Controlling and assessing the quality of aerosol jet printed features for large area and flexible electronics. Flex Print Electron 2. CrossRefGoogle Scholar
  24. 24.
    Secor EB (2018) Principles of aerosol jet printing. Flex Print Electron. CrossRefGoogle Scholar
  25. 25.
    Binder S, Glatthaar M, Rädlein E (2014) Analytical investigation of aerosol jet printing. Aerosol Sci Technol 48:924–929. CrossRefGoogle Scholar
  26. 26.
    Chen G, Gu Y, Tsang H, Hines DR, Das S (2018) The effect of droplet sizes on overspray in aerosol-jet printing. Adv Eng Mater 20:1701084. CrossRefGoogle Scholar
  27. 27.
    Salary R, Lombardi JP, Samie Tootooni M, Donovan R Rao PK, Poliks MD (2016) In situ sensor-based monitoring and computational fluid dynamics (CFD) modeling of aerosol jet printing (AJP) process. In: ASME 2016 11th International Manufacturing Science and Engineering ConferenceGoogle Scholar
  28. 28.
    Deiner LJ, Reitz TL (2017) Inkjet and aerosol jet printing of electrochemical devices for energy conversion and storage. Adv Eng Mater 19CrossRefGoogle Scholar
  29. 29.
    Yang C, Zhou E, Miyanishi S, Hashimoto K, Tajima K (2011) Preparation of active layers in polymer solar cells by aerosol jet printing. ACS Appl Mater Interfaces 3:4053–4058. CrossRefGoogle Scholar
  30. 30.
    Paulsen JA, Renn MJ (2006) Maskless printing of miniature polymer thick film resistors for embedded applications. IPC 3rd Int Conf Embed Technol 2Google Scholar
  31. 31.
    Christenson KK, Paulsen JA, Renn MJ, et al (2011) Direct printing of circuit boards using aerosol jet®. In: 27th International Conference on Digital Printing Technologies, Technical Program and Proceedings. pp 433–436Google Scholar
  32. 32.
    Carter M, Amundson T, Colvin J, Sears J (2007) Characterization of soft magnetic nano-material deposited with M3D technology. J Mater Sci 42:1828–1832. CrossRefGoogle Scholar
  33. 33.
    Mette A, Richter PL, Hörteis M, Glunz SW (2007) Metal aerosol jet printing for solar cell metallization. Prog Photovolt Res Appl 15:621–627. CrossRefGoogle Scholar
  34. 34.
    Drew K, Hopman S, Hörteis M, Glunz SW, Granek F (2011) Combining laser chemical processing and aerosol jet printing: a laboratory scale feasibility study. Prog Photovolt Res Appl 19:253–259. CrossRefGoogle Scholar
  35. 35.
    Kalio A, Leibinger M, Filipovic A, Krüger K, Glatthaar M, Wilde J (2012) Development of lead-free silver ink for front contact metallization. Sol Energy Mater Sol Cells 106:51–54. CrossRefGoogle Scholar
  36. 36.
    Tamari Y, Gautrein A, Schmiga C, Binder S, Glatthaar M, Glunz SW (2014) Synthesis of a lead- and particle-free metal-organic ink for front side metallization of crystalline silicon solar cells. Energy Procedia 55:708–714. CrossRefGoogle Scholar
  37. 37.
    Padovani S, Sinesi S, Priante S, et al (2010) New method for head-up display realization by mean of chip on board and aerosol jet process. In: 3rd Electronics System Integration Technology Conference (ESTC). IEEE, pp 1–3Google Scholar
  38. 38.
    Zhan Z, Yu L, Wei J, Zheng C, Sun D, Wang L (2014) Application of aerosol jet technology in through-via interconnection for MEMS wafer-level packaging. Microsyst Technol 21:451–455. CrossRefGoogle Scholar
  39. 39.
    Seifert T, Baum M, Roscher F, Wiemer M, Gessner T (2015) Aerosol jet printing of nano particle based electrical chip interconnects. Mater Today Proc 2:4262–4271. CrossRefGoogle Scholar
  40. 40.
    Syed-Khaja A, Hoerber J, Gruber C, Franke J (2016) A novel approach for thin-film Ag-sintering process through aerosol jet printing in power electronics. In: 20th European Microelectronics and Packaging Conference and Exhibition: Enabling Technologies for a Better Life and Future, EMPC 2015Google Scholar
  41. 41.
    Stoukatch S, Laurent P, Dricot S, et al (2012) Evaluation of aerosol jet printing (AJP) technology for electronic packaging and interconnect technique. 2012 4th Electron Syst Technol Conf ESTC 2012.
  42. 42.
    Kaestle C, Hoerber J, Oechsner F, Franke J (2015) Prospects of wire bonding as an approach for contacting additive manufactured aerosol jet printed structures. In: 2015 European Microelectronics Packaging Conference (EMPC). pp 1–6Google Scholar
  43. 43.
    Khorramdel B, Torkkeli A, Mantysalo M (2017) Electrical contacts in SOI MEMS using aerosol jet printing. IEEE J Electron Devices Soc 6. CrossRefGoogle Scholar
  44. 44.
    Verheecke W, Van Dyck M, Vogeler F, et al (2012) Optimizing aerosol jet® printing of silver interconnects on polyimide film for embedded electronics applications. In: 8th Int DAAAM Balt Conf “INDUSTRIAL Eng”. pp 373–379Google Scholar
  45. 45.
    Kopola P, Zimmermann B, Filipovic A, Schleiermacher HF, Greulich J, Rousu S, Hast J, Myllylä R, Würfel U (2012) Aerosol jet printed grid for ITO-free inverted organic solar cells. Sol Energy Mater Sol Cells 107:252–258. CrossRefGoogle Scholar
  46. 46.
    Mashayekhi M, Winchester L, Evans L, Pease T, Laurila MM, Mantysalo M, Ogier S, Teres L, Carrabina J (2016) Evaluation of aerosol, superfine inkjet, and photolithography printing techniques for metallization of application specific printed electronic circuits. IEEE Trans Electron Devices 63:1246–1253CrossRefGoogle Scholar
  47. 47.
    Vunnam S, Ankireddy K, Kellar J, Cross W (2013) Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns. Thin Solid Films 531:294–301. CrossRefGoogle Scholar
  48. 48.
    Mahajan A, Francis LF, Frisbie CD (2014) Facile method for fabricating flexible substrates with embedded, printed silver lines. ACS Appl Mater Interfaces 6:1306–1312. CrossRefGoogle Scholar
  49. 49.
    Chang Y-HY, Wang K, Wu C, Chen Y, Zhang C, Wang B (2015) A facile method for integrating direct-write devices into three-dimensional printed parts. Smart Mater Struct 24:065008. CrossRefGoogle Scholar
  50. 50.
    Shankar R, Groven L, Amert A, Whites KW, Kellar JJ (2011) Non-aqueous synthesis of silver nanoparticles using tin acetate as a reducing agent for the conductive ink formulation in printed electronics. J Mater Chem 21:10871. CrossRefGoogle Scholar
  51. 51.
    Werner C, Godlinski D, Zöllmer V, Busse M (2013) Morphological influences on the electrical sintering process of aerosol jet and ink jet printed silver microstructures. J Mater Sci Mater Electron 24:4367–4377. CrossRefGoogle Scholar
  52. 52.
    Rahman MT, McCloy J, Ramana CV, Panat R (2016) Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films. J Appl Phys 120:075305. CrossRefGoogle Scholar
  53. 53.
    Hoerber J, Goth C, Franke J, Hedges M (2011) Electrical functionalization of thermoplastic materials by aerosol jet printing. In: 2011 IEEE 13th Electronics Packaging Technology Conference. IEEE, pp 813–818Google Scholar
  54. 54.
    Schuetz K, Hoerber J, Franke J (2014) Selective light sintering of aerosol-jet printed silver nanoparticle inks on polymer substrates. In: AIP Conference Proceedings. pp 732–735Google Scholar
  55. 55.
    Kamyshny A, Magdassi S (2014) Conductive nanomaterials for printed electronics. Small 10:3515–3535CrossRefGoogle Scholar
  56. 56.
    Reboun J, Pretl S, Navratil J, Hlina J (2016) Bending endurance of printed conductive patterns on flexible substrates. In: 2016 39th International Spring Seminar on Electronics Technology (ISSE). IEEE, pp 184–188Google Scholar
  57. 57.
    Jabari E, Toyserkani E (2015) Micro-scale aerosol-jet printing of graphene interconnects. Carbon N Y 91:321–329. CrossRefGoogle Scholar
  58. 58.
    Jabari E, Toyserkani E (2016) Aerosol-jet printing of highly flexible and conductive graphene/silver patterns. Mater Lett 174:40–43. CrossRefGoogle Scholar
  59. 59.
    Kan W, Chang Y-H, Zhang C, Wang B (2016) Conductive-on-demand: tailorable polyimide/carbon nanotube nanocomposite thin film by dual-material aerosol jet printing. Carbon N Y 98:397–403. CrossRefGoogle Scholar
  60. 60.
    Reitberger T, Franke J, Hoffmann G-A, et al (2016) Integration of polymer optical waveguides by using flexographic and aerosol jet printing. In: 2016 12th International Congress Molded Interconnect Devices (MID). IEEE, pp 1–6Google Scholar
  61. 61.
    Reitberger T, Hoerber J, Schramm R et al (2015) Aerosol jet printing of optical waveguides. In: 2015 38th International Spring Seminar on Electronics Technology (ISSE). IEEE, pp 5–10Google Scholar
  62. 62.
    Hoffmann G, Reitberger T, Franke J, Overmeyer L (2016) Conditioning of surface energy and spray application of optical waveguides for integrated intelligent systems. Procedia Technol 26:169–176. CrossRefGoogle Scholar
  63. 63.
    Reitberger T, Hoffmann G-A, Wolfer T, et al (2016) Printing polymer optical waveguides on conditioned transparent flexible foils by using the aerosol jet technology. In: List-Kratochvil EJW (ed) Proceedings volume 9945, printed memory and circuits II. p 99450GGoogle Scholar
  64. 64.
    Ha M, Zhang W, Braga D, Renn MJ, Kim CH, Frisbie CD (2013) Aerosol-jet-printed, 1 volt H-bridge drive circuit on plastic with integrated electrochromic pixel. ACS Appl Mater Interfaces 5:13198–13206. CrossRefGoogle Scholar
  65. 65.
    Gu Y, Park D, Bowen D, et al (2018) Direct-write printed, solid-core solenoid inductors with commercially relevant inductances. Adv Mater TechnolGoogle Scholar
  66. 66.
    Xu BL, Zhao Y, Yu LK, Xu B, Zhang HE, Lv WL, Sun DH (2013) Aerosol jet printing on radio frequency IDentification tag applications. Key Eng Mater 562–565:1417–1421. CrossRefGoogle Scholar
  67. 67.
    Rahman MT, Panat R, Heo D (2015) 3-D antenna structures using novel direct-write additive manufacturing method. In: ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2015, collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, United StatesGoogle Scholar
  68. 68.
    Rahman MT, Panat R, Heo D (2015) 3-D antenna structures using novel direct-write additive manufacturing method. In: Volume 3: Advanced fabrication and manufacturing; emerging technology frontiers; energy, health and water-applications of nano-, micro- and mini-scale devices; MEMS and NEMS; technology update talks; thermal management using micro channels, jets, sprays. ASME, p V003T03A002Google Scholar
  69. 69.
    Rahman T, Renaud L, Heo D, Renn M, Panat R (2015) Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures. J Micromech Microeng 25:107002. CrossRefGoogle Scholar
  70. 70.
    Fan Cai, Pavlidis S, Papapolymerou J, et al (2014) Aerosol jet printing for 3-D multilayer passive microwave circuitry. In: 2014 44th European Microwave Conference. IEEE, pp 512–515Google Scholar
  71. 71.
    He Y, Becker M, Grotjohn T, et al (2017) RF characterization of coplanar waveguide (CPW) transmission lines on single-crystalline diamond platform for integrated high power RF electronic systems. IEEE MTT-S Int Microw Symp Dig 517–520.
  72. 72.
    Cai F, Chang Y, Wang K, et al (2014) High resolution aerosol jet printing of D-band printed transmission lines on flexible LCP substrate. In: 2014 IEEE MTT-S International Microwave Symposium (IMS2014). IEEE, pp 1–3Google Scholar
  73. 73.
    Lan X, Lu X, Blumenthal T, et al (2015) Ultra-wideband microwave components fabricated using low-cost aerosol-jet printing technology. In: 2015 IEEE Radio and Wireless Symposium (RWS). IEEE, pp 156–158Google Scholar
  74. 74.
    Oakley C, Kaur A, Byford JA, Chahal P (2017) Aerosol-jet printed quasi-optical terahertz filters. In: 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, 2017, IEEE, pp 248–253.
  75. 75.
    Hester J, Nguyen E, Tice J, Radisic V (2017) A novel 3d-printing-enabled “roller coaster” transmission line. In: 2017 IEEE Antennas Propag Soc Int Symp Proc 2017–Janua:2639–2640.
  76. 76.
    Cho JH, Lee J, Xia Y, Kim BS, He Y, Renn MJ, Lodge TP, Daniel Frisbie C (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater 7:900–906. CrossRefGoogle Scholar
  77. 77.
    Hong K, Kim YH, Kim SH, Xie W, Xu WD, Kim CH, Frisbie CD (2014) Aerosol jet printed, sub-2 V complementary circuits constructed from P- and N-type electrolyte gated transistors. Adv Mater 26:7032–7037. CrossRefGoogle Scholar
  78. 78.
    Hong K, Kim SH, Lee KH, Frisbie CD (2013) Printed, sub-2V ZnO electrolyte gated transistors and inverters on plastic. Adv Mater 25:3413–3418. CrossRefGoogle Scholar
  79. 79.
    Wu X, Chen Z, Zhou T, Shao S, Xie M, Song M, Cui Z (2015) Printable poly(methylsilsesquioxane) dielectric ink and its application in solution processed metal oxide thin-film transistors. RSC Adv 5:20924–20930. CrossRefGoogle Scholar
  80. 80.
    Li H, Tang Y, Guo W, Liu H, Zhou L, Smolinski N (2016) Polyfluorinated electrolyte for fully printed carbon nanotube electronics. Adv Funct Mater 26:6914–6920. CrossRefGoogle Scholar
  81. 81.
    Jones CS, Lu X, Renn M, Stroder M, Shih WS (2010) Aerosol-jet-printed, high-speed, flexible thin-film transistor made using single-walled carbon nanotube solution. Microelectron Eng 87:434–437. CrossRefGoogle Scholar
  82. 82.
    Qian L, Xu W, Fan X, Wang C, Zhang J, Zhao J, Cui Z (2013) Electrical and photoresponse properties of printed thin-film transistors based on poly(9,9-dioctylfluorene-co-bithiophene) sorted large-diameter semiconducting carbon nanotubes. J Phys Chem C 117:18243–18250. CrossRefGoogle Scholar
  83. 83.
    Rother M, Brohmann M, Yang S, Grimm SB, Schießl SP, Graf A, Zaumseil J (2017) Aerosol-jet printing of polymer-sorted (6,5) carbon nanotubes for field-effect transistors with high reproducibility. Adv Electron Mater 3:1700080. CrossRefGoogle Scholar
  84. 84.
    Cao C, Andrews JB, Franklin AD (2017) Completely printed, flexible, stable, and hysteresis-free carbon nanotube thin-film transistors via aerosol jet printing. Adv Electron Mater 3:1700057. CrossRefGoogle Scholar
  85. 85.
    Liu Z, Zhao J, Xu W, Qian L, Nie S, Cui Z (2014) Effect of surface wettability properties on the electrical properties of printed carbon nanotube thin-film transistors on SiO2/Si substrates. ACS Appl Mater Interfaces 6:9997–10004. CrossRefGoogle Scholar
  86. 86.
    Xu Q, Zhao J, Pecunia V, Xu W, Zhou C, Dou J, Gu W, Lin J, Mo L, Zhao Y, Cui Z (2017) Selective conversion from p-type to n-type of printed bottom-gate carbon nanotube thin-film transistors and application in complementary metal–oxide–semiconductor inverters. ACS Appl Mater Interfaces 9:12750–12758. CrossRefGoogle Scholar
  87. 87.
    Liu R, Shen F, Ding H, Lin J, Gu W, Cui Z, Zhang T (2013) All-carbon-based field effect transistors fabricated by aerosol jet printing on flexible substrates. J Micromech Microeng 23:065027. CrossRefGoogle Scholar
  88. 88.
    Zhou L, Zhuang JY, Song MS, Su WM, Cui Z (2014) Enhanced performance for organic light-emitting diodes by embedding an aerosol jet printed conductive grid. J Phys D Appl Phys 47:115504. CrossRefGoogle Scholar
  89. 89.
    Tait JG, Witkowska E, Hirade M, Ke TH, Malinowski PE, Steudel S, Adachi C, Heremans P (2015) Uniform aerosol jet printed polymer lines with 30 μm width for 140 ppi resolution RGB organic light emitting diodes. Org Electron 22:40–43. CrossRefGoogle Scholar
  90. 90.
    van Hest MFAM, Habas SE, Underwood JM, et al (2010) Direct write metallization for photovoltaic cells and scaling thereof. In: 2010 35th IEEE Photovoltaic Specialists Conference. IEEE, pp 003626–003628Google Scholar
  91. 91.
    Platt HAS, Li Y, Novak JP, van Hest MFAM (2012) Non-contact printed aluminum metallization of Si photovoltaic devices. In: 2012 38th IEEE Photovoltaic Specialists Conference. IEEE, pp 002244–002246Google Scholar
  92. 92.
    Williams BA, Mahajan A, Smeaton MA, Holgate CS, Aydil ES, Francis LF (2015) Formation of copper zinc tin sulfide thin films from colloidal nanocrystal dispersions via aerosol-jet printing and compaction. ACS Appl Mater Interfaces 7:11526–11535. CrossRefGoogle Scholar
  93. 93.
    Bag S, Deneault JR, Durstock MF (2017) Aerosol-jet-assisted thin-film growth of CH 3 NH 3 PbI 3 perovskites—a means to achieve high quality, defect-free films for efficient solar cells. Adv Energy Mater 1701151:1701151. CrossRefGoogle Scholar
  94. 94.
    Rodriguez J, Lennon AJ, Luo M, Li Z, Yao Y, Lu PH, Chan C, Wenham SR (2012) Dielectric patterning using aerosol jet printing. J Imaging Sci Technol 56:1–7. CrossRefGoogle Scholar
  95. 95.
    Sukeshini AM, Jenkins T, Gardner P, et al (2010) Investigation of aerosol jet deposition parameters for printing SOFC layers. In: ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1. ASME, pp 325–332Google Scholar
  96. 96.
    Sukeshini AM, Gardner P, Meisenkothen F, et al (2011) Aerosol jet printing and microstructure of SOFC electrolyte and cathode layers. pp 2151–2160Google Scholar
  97. 97.
    Sukeshini AM, Meisenkothen F, Gardner P, Reitz TL (2013) Aerosol jet?? Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy. J Power Sources 224:295–303. CrossRefGoogle Scholar
  98. 98.
    Maiwald M, Werner C, Zoellmer V, Busse M (2010) INKtelligent printed strain gauges. Sensors Actuators A Phys 162:198–201. CrossRefGoogle Scholar
  99. 99.
    Maiwald M, Werner C, Zöllmer V, Busse M (2010) INKtelligent printing ® for sensorial applications. Sens Rev 30:19–23. CrossRefGoogle Scholar
  100. 100.
    Zhao D, Liu T, Zhang M, Liang R, Wang B (2012) Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures. Smart Mater Struct 21:115008. CrossRefGoogle Scholar
  101. 101.
    Rahman MT, Moser R, Zbib HM, Ramana CV, Panat R (2018) 3D printed high performance strain sensors for high temperature applications. J Appl Phys 123:024501. CrossRefGoogle Scholar
  102. 102.
    Rahman MT, Rahimi A, Gupta S, Panat R (2016) Microscale additive manufacturing and modeling of interdigitated capacitive touch sensors. Sensors Actuators A Phys 248:94–103. CrossRefGoogle Scholar
  103. 103.
    Andrews JB, Cao C, Brooke MA, Franklin AD (2017) Noninvasive material thickness detection by aerosol jet printed sensors enhanced through metallic carbon nanotube ink. IEEE Sensors J 17:4612–4618. CrossRefGoogle Scholar
  104. 104.
    Fessl J, Mach F, Navratil J (2017) Numerical and experimental analysis of electrostatic adhesion force generated by interdigital electrodes. In: 2017 18th Int Symp Electromagn Fields Mechatronics, Electr Electron Eng ISEF 2017 c:1–2.
  105. 105.
    Reitelshöfer S, Göttler M, Schmidt P, Treffer P, Landgraf M, Franke J (2016) Aerosol-jet-printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device. In: Proc. SPIE 9798, Electroactive Polymer Actuators and Devices (EAPAD)Google Scholar
  106. 106.
    Landgraf M, Reitelshofer S, Franke J, Hedges M (2013) Aerosol jet printing and lightweight power electronics for dielectric elastomer actuators. In: 2013 3rd International Electric Drives Production Conference (EDPC). IEEE, pp 1–7Google Scholar
  107. 107.
    Yoo IS, Landgraf M, Ramer C, Reitelshöfer S, Ziegler C, Franke J (2014) My new colleague has artificial muscles: a DEA based approach for inherently compliant robotic systems. Prod Eng 8:711–717. CrossRefGoogle Scholar
  108. 108.
    Reitelshofer S, Landgraf M, Graf D, et al (2015) A new production process for soft actuators and sensors based on dielectric elastomers intended for safe human robot interaction. In: 2015 IEEE/SICE International Symposium on System Integration (SII). IEEE, pp 51–56Google Scholar
  109. 109.
    Aga RS, Lombardi JP, Bartsch CM, Heckman EM (2014) Performance of a printed photodetector on a paper substrate. IEEE Photon Technol Lett 26:305–308. CrossRefGoogle Scholar
  110. 110.
    Wang F-X, Lin J, Gu W-B, Liu YQ, Wu HD, Pan GB (2013) Aerosol-jet printing of nanowire networks of zinc octaethylporphyrin and its application in flexible photodetectors. Chem Commun 49:2433–2435. CrossRefGoogle Scholar
  111. 111.
    Eckstein R, Rödlmeier T, Glaser T, Valouch S, Mauer R, Lemmer U, Hernandez-Sosa G (2015) Aerosol-jet printed flexible organic photodiodes: semi-transparent, color neutral, and highly efficient. Adv Electron Mater 1:1500101. CrossRefGoogle Scholar
  112. 112.
    Ichiyama R, Ninkov Z, Williams S, et al (2017) Using quantum-dots to enable deep-UV sensitivity with standard silicon-based imaging detectors. In: Soskind YG, Olson C (eds) Proceedings of SPIE. p 1011011Google Scholar
  113. 113.
    Liu R, Ding H, Lin J, Shen F, Cui Z, Zhang T (2012) Fabrication of platinum-decorated single-walled carbon nanotube based hydrogen sensors by aerosol jet printing. Nanotechnology 23:505301. CrossRefGoogle Scholar
  114. 114.
    Kuberský P, Altšmíd J, Hamáček A, Nešpůrek S, Zmeškal O (2015) An electrochemical NO2 sensor based on ionic liquid: influence of the morphology of the polymer electrolyte on sensor sensitivity. Sensors 15:28421–28434. CrossRefGoogle Scholar
  115. 115.
    Yang H, Rahman MT, Du D et al (2016) 3-D printed adjustable microelectrode arrays for electrochemical sensing and biosensing. Sensors Actuators B Chem 230:600–606. CrossRefGoogle Scholar
  116. 116.
    Lombardi J, Poliks MD, Zhao W, et al (2017) Nanoparticle based printed sensors on paper for detecting chemical species. In: 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). IEEE, pp 764–771Google Scholar
  117. 117.
    Saleh MS, Li J, Park J, Panat R (2018) 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit Manuf 23:70–78. CrossRefGoogle Scholar
  118. 118.
    Sadeq Saleh M, HamidVishkasougheh M, Zbib H, Panat R (2018) Polycrystalline micropillars by a novel 3-D printing method and their behavior under compressive loads. Scr Mater 149:144–149. CrossRefGoogle Scholar
  119. 119.
    De Silva MN, Paulsen J, Renn MJ, Odde DJ (2006) Two-step cell patterning on planar and complex curved surfaces by precision spraying of polymers. Biotechnol Bioeng 93:919–927. CrossRefGoogle Scholar
  120. 120.
    Große Holthaus M, Rezwan K (2008) Comparison of three microstructure fabrication methods for bone cell growth studies. In: ASME 2008 International Manufacturing Science and Engineering Conference, Volume 2. ASME, pp 483–490Google Scholar
  121. 121.
    Kitsara M, Kontziampasis D, Agbulut O, Chen Y (2019) Heart on a chip: micro-nanofabrication and microfluidics steering the future of cardiac tissue engineering. Microelectron Eng 203–204:44–62. CrossRefGoogle Scholar
  122. 122.
    Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, Wood RJ (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–455. CrossRefGoogle Scholar
  123. 123.
    Wallin TJ, Pikul J, Shepherd RF (2018) 3D printing of soft robotic systems. Nat Rev Mater 3:84–100CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

OpenAccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • N. J. Wilkinson
    • 1
    Email author
  • M. A. A. Smith
    • 1
  • R. W. Kay
    • 1
  • R. A. Harris
    • 1
  1. 1.Future Manufacturing Processes Research GroupUniversity of LeedsLeedsUK

Personalised recommendations