Advertisement

Effect of Luffa cylindrica fiber and particulate on the mechanical properties of epoxy

  • C. C. Daniel-MkpumeEmail author
  • C. Ugochukwu
  • E. G. Okonkwo
  • O. S. I. Fayomi
  • S. M. Obiorah
ORIGINAL ARTICLE
  • 33 Downloads

Abstract

This study examines the effect of addition of Luffa cylindrica fiber (LCF) and Luffa cylindrica particulate (LCP) on the properties of epoxy resin. Luffa cylindrica fiber treated with 8% NaOH and of 2, 4, and 6% weight fraction was used to reinforce epoxy resin via hand lay-up method. Hybridization of the fiber and particulate was also done with the particulate having a constant weight fraction of 10% whereas the fibers were varied as in the mono-reinforced Luffa cylindrica fiber composite. The samples were machined for mechanical and microstructural analysis. Result showed that addition of the reinforcement led to an improvement in mechanical properties. However, the hybrid was seen to showcase better properties compared to the fiber-reinforced composite with the hybrid sample of composition 4 wt% LCF and 10 wt% LCP exhibiting the highest tensile and flexural strength of 13.489 MPa and 20.3 MPa, respectively. Microstructural analysis showed excellent homogeneity with few voids and better adhesion between the reinforcement and matrix. These results show that this composite can find application in the interior and exterior parts of automobiles as well as in household wares like flower pots.

Keywords

Luffa cylindrica fiber Luffa cylindrica particulate Epoxy resin Hand lay-up Hybridization Mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Chandramohan D (2014) Studies on natural fiber particle reinforced composite material for conservation of natural resources. Adv Appl Sci Res 5(2):305–315Google Scholar
  2. 2.
    Pai AR, Jatap RN (2015) Surface morphology and mechanical properties of some unique natural fiber reinforced polymer composites – a review. J Mater Environ Sci 6(4):907–917Google Scholar
  3. 3.
    EL-Wazery MS (2017) Mechanical characteristics and novel applications of hybrid polymer composites- a review. J Mater Environ Sci 8(2):666–675Google Scholar
  4. 4.
    Hoi-yan C, Mei-po H, Kin-tak L, Cardona F, Hui D (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos Part B 40(2009):655–663Google Scholar
  5. 5.
    Sathishkumar TP, Naveen J, Satheeshkumar S (2014) Hybrid fiber reinforced polymer composites – a review. J Reinf Plast Compos 33(5):454–471CrossRefGoogle Scholar
  6. 6.
    Hossain SI, Hasan M, Hasan MN, Hassan A (2013) Effect of chemical treatment on physical, mechanical and thermal properties of ladies finger natural fiber. Adv Mater Sci Eng 2013(2013):1–6Google Scholar
  7. 7.
    Obasi HC, Iheaturu NC, Onuoha FN, Chike-Onyegbula CO, Akanbi MN, Ezeh VO (2014) Influence of alkali treatment and fibre content on the properties of oil palm press fibre reinforced epoxy bio-composites. Am J Eng Res (AJER) 3(2):117–123Google Scholar
  8. 8.
    Gopinatha A, Kumar MS, Elayaperumal A (2014) Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Procedia Eng 97(2014):2052–2063CrossRefGoogle Scholar
  9. 9.
    Karthik R, Sathiyamurthy S, Jayabal S, Chidambaram K (2014) Tribological behaviour of rice husk and egg shell hybrid particulated coir-polyester composites, IOSR J Mech Civil Eng (IOSR-JMCE), 75–80. Retrieved on October 9, 2016 from http://www.iosrjournals.org/iosr-jmce/papers/NCCAMABS/Volume-3/39.pdf
  10. 10.
    Prabhu R, Amin AK, Dhyanchandra (2015) Development and characterization of low cost polymer composites from coconut coir. Am J Mater Sci 5(3C):62–68Google Scholar
  11. 11.
    Bello OS, Azeez MA, Adedeji AO (2013) Traditional and medicinal uses of Luffa cylindrica: a review. J Med Plant Stud 1(5):102–111Google Scholar
  12. 12.
    Oyetayo FL, Oyetayo VO, Ajewole V (2007) Phytochemical profile and antibacterial properties of the seed and leaf of the Luffa plant (Luffa cylindrica). J Pharmacol Toxicol 2(2007):586–589Google Scholar
  13. 13.
    Burkill HM (1985) The useful plants of West Tropical Africa, Vol 1. Retrieved on September 06, 2017 from http://plants.jstor.org/stable/10.5555/al.ap.upwta.1_1205
  14. 14.
    NagarajaGanesh B, Muralikannan R (2016) Extraction and characterization of ligno-cellulosic fibers from Luffa cylindrica fruit. Int J Polym Anal Charact 21:259–266.  https://doi.org/10.1080/1023666X.2016.1146849 CrossRefGoogle Scholar
  15. 15.
    Macuja JCO, Ruedas LN, España RCN (2015) Utilization of cellulose from Luffa cylindrica fiber as binder in acetaminophen tablets. Adv Environ Chem 2015(2015).  https://doi.org/10.1155/2015/243785
  16. 16.
    Akgül M, Korkut S, Camlibel O, Ayata Ü (2013) Some chemical properties of Luffa and its suitability for medium density fiberboard (MDF) production. BioResources 8(2):1709–1717CrossRefGoogle Scholar
  17. 17.
    Laidani Y, Hanini S, Mortha G, Heninia G (2012) Study of a fibrous annual plant, Luffa Cylindrica for paper application. Iran J Chem Chem Eng 31(4):119–129Google Scholar
  18. 18.
    Mohanta N, Acharya SK (2015) Mechanical and tribological performance of Luffa Cylindrica fibre – reinforced epoxy composite. BioResources 10(4):8364–8377CrossRefGoogle Scholar
  19. 19.
    Panneerdhass R, Baskan R, Rajkumar K, Gnanavebabu A (2014) Mechanical properties of chopped randomly oriented epoxy – Luffa fiber reinforced polymer composite. Appl Mech Mater 591(2014):103–107CrossRefGoogle Scholar
  20. 20.
    Mani P, Dellibabu GV, Anilbasha K, Anbukarsi K (2014) Tensile and flexural properties of Luffa fiber reinforced composite material. Int J Eng Res Technol (IJERT) 3(5):1882–1885Google Scholar
  21. 21.
    Parida C, Dash SK, Das SC (2015) Effect of fiber treatment and fiber loading on mechanical properties of Luffa-resorcinol composites. Indian J Mater Sci 2015:1–6.  https://doi.org/10.1155/2015/658064 CrossRefGoogle Scholar
  22. 22.
    Hashim MY, Zaidi AMA, Ariffin S (2017) Plant fiber reinforced polymer matrix composite: a discussion on composite fabrication and characterization technique [plant_fiber_reinforced]. Retrieved on July 7, 2017 from http://eprints.uthm.edu.my/2541/1/Plant_Fiber_Reinforced_Polymer_Matrix_Composite.pdf
  23. 23.
    Kocak D, Merdan N, Yuksek M, Sancak E (2013) Effects of chemical modification on mechanical properties of Luffa Cylindrica. Asian J Chem 25(2):637–641CrossRefGoogle Scholar
  24. 24.
    Raj KLN, Ashok KG (2016) Design and fabrication of vibration damping pad using Luffa Cylindrica fiber reinforced polymer composite. Int J Multidiscip Res Mod Educ 2(1):441–448Google Scholar
  25. 25.
    Sabarinathan P, Rajkumar K, Gnanavelbabu A (2016) Investigation of mechanical properties of Luffa cylindrical and flax reinforced hybrid polymer composite. J Adv Eng Res 3(2):124–127Google Scholar
  26. 26.
    Ichetaonye SI, Madufor IC, Yibowei ME, Ichetaonye DN (2015) Physico-mechanical properties of Luffa aegyptiaca fiber reinforced polymer matrix composite. Open J Compos Mater 5:110–117.  https://doi.org/10.4236/ojcm.2015.54014 CrossRefGoogle Scholar
  27. 27.
    Westrup JL, Marques da Silva PM, Gonçalves dal-Bó A, Benavides R, Caldart CA, Coronetti JC, Doy TA, Frizon T, da Silva L (2014) Effect of chemical treatments on the properties of HDPE composites with Luffa cylindrical fiber. Cellul Chem Technol 48(3–4):337–344Google Scholar
  28. 28.
    Vignesh K, Manikandan T, Madhankumar A, Kersone DN, Gopinath V (2015) Investigation on tensile and flexural strength of KOH treated ridge gourd fiber-polyester resin composite. Int J Recent Innov Trends Comput Commun 3(3):1493–1496CrossRefGoogle Scholar
  29. 29.
    Sakthivel M, Vijayakumar S, Ramesh S (2014) Production and characterization of Luffa/coir reinforced polypropylene composite. Procedia Mater Sci 5(2014):739–745CrossRefGoogle Scholar
  30. 30.
    Srinivasan C, Sathish S, Vignesh K (2014) Mechanical properties of chemically treated Luffa Aegyptiaca fiber reinforced epoxy matrix composites. Int J Sci Res Manag (IJSRM) 2(10):1515–1524Google Scholar
  31. 31.
    Panneerdhass R, Gnanavelbabu A, Rajkumar K (2014) Mechanical properties of Luffa Fiber and ground nut reinforced epoxy polymer hybrid composites. Procedia Eng 97(2014):2042–2051.  https://doi.org/10.1016/j.proeng.2014.12.447 CrossRefGoogle Scholar
  32. 32.
    Hassan SB, Oghenevweta JE, Aigbodion VS (2012) Morphological and mechanical properties of carbonized waste maize stalk as reinforcement for eco-composites. Compos Part B 43(2012):2230–2236CrossRefGoogle Scholar
  33. 33.
    Razali N, Sapuan SM, Jawaid M, Ishak MR, Lazim Y (2016) Mechanical and thermal properties of Roselle fibre reinforced vinyl-ester composite. BioResources 11(4):9325–9339CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • C. C. Daniel-Mkpume
    • 1
    Email author
  • C. Ugochukwu
    • 1
  • E. G. Okonkwo
    • 1
  • O. S. I. Fayomi
    • 2
    • 3
  • S. M. Obiorah
    • 4
  1. 1.Department of Metallurgical and Materials EngineeringUniversity of NigeriaNsukkaNigeria
  2. 2.Department of Chemical, Metallurgical and Materials EngineeringTshwane University of UniversityAwkaNigeria
  3. 3.Department of Mechanical EngineeringCovenant University OtaOtaNigeria
  4. 4.Department of Metallurgical and Materials EngineeringNnamdi Azikiwe UniversityAwkaNigeria

Personalised recommendations