Advertisement

Specific principles of work area stiffness measurement applied to a modern three-axis milling machine

  • Tomáš Stejskal
  • Jaroslav Melko
  • Adrián Rjabušin
  • Gabriel Fedorko
  • Michal Hatala
  • Vieroslav MolnárEmail author
ORIGINAL ARTICLE
  • 4 Downloads

Abstract

The paper discusses continuous measurement of the machine working space stiffness. In comparison with the conventional stiffness measurement, this is a specific measurement because the influence of the load velocity on the static output characteristic is also shown. This effect is undesirable in terms of detecting the real stiffness of the machine, but at the same time, it is also a diagnostic indicator as it is—as of now—an unexplored parameter of static stiffness. For example, if the load speed is exceeded by deformation of 5 μm s−1, the stiffness of the machine increases considerably. The stiffness changes from 43 to 84 N μm−1, i.e., it approximately grows to double. In order to eliminate the misrepresentation of the course of stiffness, the load speed was reduced and special evaluation software was applied. The measurement methodology is highly effective in terms of measurement time, and it is suitable for the development of a portable facility measuring machine stiffness.

Keywords

Stiffness Machine tool Deflection measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This contribution has been supported by research grants: APVV-15-0149 Research of new measuring methods of machine condition, VEGA 1/0403/18, VEGA 1/0437/17, VEGA 1/0063/16, KEGA 012TUKE-4/2019, and KEGA 013TUKE-4/2019.

References

  1. 1.
    Portman VT, Chapsky VS, Shneor Y, Ayalon E (2015) Machine stiffness rating: characterization and evaluation in design stage. Procedia CIRP 36:111–116.  https://doi.org/10.1016/j.procir.2015.01.080 CrossRefGoogle Scholar
  2. 2.
    Vrtiel Š, Hajdu Š, Behúlová M (2017) Analysis of the machine frame stiffness using numerical simulation. IOP Conf Ser Mater Sci Eng 266:012015.  https://doi.org/10.1088/1757-899X/266/1/012015 CrossRefGoogle Scholar
  3. 3.
    Suh JD, Lee DG, Kegg R (2002) Composite machine tool structures for high speed milling machines. CIRP Ann Manuf Technol 51:285–288.  https://doi.org/10.1016/S0007-8506(07)61518-2 CrossRefGoogle Scholar
  4. 4.
    Apprich S, Wulle F, Lechler A, Pott A, Verl A (2016) Approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools for vibration reduction. Procedia CIRP 41:812–817.  https://doi.org/10.1016/j.procir.2015.12.014 CrossRefGoogle Scholar
  5. 5.
    Aggogeri F, Borboni A, Merlo A, Pellegrini N, Ricatto R (2017) Vibration damping analysis of lightweight structures in machine tools. Materials (Basel) 10.  https://doi.org/10.3390/ma10030297
  6. 6.
    Aggogeri F, Merlo A, Mazzola M (2010) Multifunctional structure solutions for ultra high precision (UHP) machine tools. Int J Mach Tools Manuf 50:366–373.  https://doi.org/10.1016/j.ijmachtools.2009.11.001 CrossRefGoogle Scholar
  7. 7.
    Burtscher J, Koch SF, Bauer J, Wagner H, Fleischer J (2015) High performance machining enabled by adaptive machine components. Procedia CIRP 31:70–75.  https://doi.org/10.1016/j.procir.2015.03.039 CrossRefGoogle Scholar
  8. 8.
    Ohsenbrügge C, Marth W, Navarro Y, De Sosa I et al (2016) Reduced material model for closed cell metal foam infiltrated with phase change material based on high resolution numerical studies. Appl Therm Eng 94:505–512.  https://doi.org/10.1016/j.applthermaleng.2015.09.102 CrossRefGoogle Scholar
  9. 9.
    Neugebauer R, Lies C, Hohlfeld J, Hipke T (2007) Adhesion in sandwiches with aluminum foam core. Prod Eng 1:271–278.  https://doi.org/10.1007/s11740-007-0046-4 CrossRefGoogle Scholar
  10. 10.
    Chen D, Bonis M, Zhang F, Dong S (2011) Thermal error of a hydrostatic spindle. Precis Eng 35:512–520.  https://doi.org/10.1016/j.precisioneng.2011.02.005 CrossRefGoogle Scholar
  11. 11.
    Rahmani M, Bleicher F (2016) Experimental and analytical investigations on normal and angular stiffness of linear guides in manufacturing systems. Procedia CIRP 41:795–800.  https://doi.org/10.1016/j.procir.2015.12.033 CrossRefGoogle Scholar
  12. 12.
    Yuan Lin C, Pin Hung J, Liang Lo T (2010) Effect of preload of linear guides on dynamic characteristics of a vertical column spindle system. Int J Mach Tools Manuf 50:741–746.  https://doi.org/10.1016/j.ijmachtools.2010.04.002 CrossRefGoogle Scholar
  13. 13.
    Huang DT-Y, Lee JJ (2001) On obtaining machine tool stiffness by CAE techniques. Int J Mach Tools Manuf 41:1149–1163.  https://doi.org/10.1016/S0890-6955(01)00012-8 CrossRefGoogle Scholar
  14. 14.
    Yang Z, Chen H, Yu T (2018) Effects of rolling bearing configuration on stiffness of machine tool spindle. Proc Inst Mech Eng C J Mech Eng Sci 232:775–785.  https://doi.org/10.1177/0954406217693659 CrossRefGoogle Scholar
  15. 15.
    Stejskal T, Svetlík J, Dovica M, Demeč P, Kráľ J (2017) Measurement of static stiffness after motion on a three-axis CNC milling table. Appl Sci 8:15.  https://doi.org/10.3390/app8010015 CrossRefGoogle Scholar
  16. 16.
    Shuzi Y (1981) A study of the static stiffness of machine tool spindles. Int J Mach Tool Des Res 21:23–40.  https://doi.org/10.1016/0020-7357(81)90011-1 CrossRefGoogle Scholar
  17. 17.
    Altintas Y, Cao Y (2005) Virtual design and optimization of machine tool spindles. CIRP Ann Manuf Technol 54:379–382.  https://doi.org/10.1016/S0007-8506(07)60127-9 CrossRefGoogle Scholar
  18. 18.
    Chen D, Fan J, Zhang F (2012) Dynamic and static characteristics of a hydrostatic spindle for machine tools. J Manuf Syst 31:26–33.  https://doi.org/10.1016/j.jmsy.2010.11.006 CrossRefGoogle Scholar
  19. 19.
    Rantatalo M, Aidanpää JO, Göransson B, Norman P (2007) Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement. Int J Mach Tools Manuf 47:1034–1045.  https://doi.org/10.1016/j.ijmachtools.2006.10.004 CrossRefGoogle Scholar
  20. 20.
    Züst S, Gontarz A, Pavliček F, Mayr J, Wegener K (2015) Model based prediction approach for internal machine tool heat sources on the level of subsystems. Procedia CIRP 28:28–33.  https://doi.org/10.1016/j.procir.2015.04.006 CrossRefGoogle Scholar
  21. 21.
    Bryan J (1990) International Status of Thermal Error Research (1990). CIRP Ann 39:645–656.  https://doi.org/10.1016/S0007-8506(07)63001-7 CrossRefGoogle Scholar
  22. 22.
    Rivin E (1999) Stiffness and damping in mechanical design. CRC PressGoogle Scholar
  23. 23.
    Archenti A, Nicolescu M, Casterman G, Hjelm S (2012) A new method for circular testing of machine tools under loaded condition. Procedia CIRP 1:575–580CrossRefGoogle Scholar
  24. 24.
    Kono D, Nishio S, Yamaji I, Matsubara A (2015) A method for stiffness tuning of machine tool supports considering contact stiffness. Int J Mach Tools Manuf 90:50–59.  https://doi.org/10.1016/j.ijmachtools.2015.01.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Tomáš Stejskal
    • 1
  • Jaroslav Melko
    • 1
  • Adrián Rjabušin
    • 1
  • Gabriel Fedorko
    • 2
  • Michal Hatala
    • 3
  • Vieroslav Molnár
    • 3
    Email author
  1. 1.Faculty of Mechanical EngineeringTechnical University of KosiceKosiceSlovak Republic
  2. 2.Faculty of Mining, Ecology, Process Control and GeotechnologyTechnical University of KosiceKosiceSlovak Republic
  3. 3.Faculty of Manufacturing Technologies of Technical University in Kosice with a seat in PresovPresovSlovak Republic

Personalised recommendations