Characterization of the chips generated by the nanomachining of germanium for X-ray crystal optics

  • Zdenko ZápražnýEmail author
  • Dušan Korytár
  • Matej Jergel
  • Yuriy Halahovets
  • Mário Kotlár
  • Igor Maťko
  • Jakub Hagara
  • Peter Šiffalovič
  • Jozef Kečkéš
  • Eva Majková


Micro-Raman spectroscopy, scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM) were used to study the effect of cutting speed and cutting depth on the mode of the single-point diamond fly cutting of Ge(110) surface via crystallinity of the chips. Reducing the cutting depth from 15 to 2 μm and concurrently cutting speed from 10 to 2 mm/min at 2000 rpm, the content of amorphous phase in the chips increased at the expense of the crystalline one from 28 to 46%. Simultaneously, the chip morphology visible by SEM suggested transition from a brittle to a mixed brittle-ductile mode of nanomachining. The damage transition line indicates 1/3 portion of the ductile component at 2-μm cutting depth that produced twisted lamellae of a width of 18–20 μm without any signs of a fracture. As the feed rate here was 1 μm/rev, the tool made 18–20 revolutions while passing the same point of the nanomachined surface that was enough to gradually remove the surface region damaged by the brittle cutting component along with the entire amorphous region beneath, both being delaminated by the chips. This explains the dislocation-free single-crystal lattice beneath the Ge(110) surface machined under these conditions. A close relationship between the brittle mode of nanomachining and crystallinity of the chips observed by micro-Raman spectroscopy and SEM was confirmed by HR-TEM showing dense occurrence of nanocrystals in the chips coming from the nanomachinings with 5-μm and 15-μm cutting depths. These results demonstrate potential of the single-point diamond machining for the preparation of high-quality X-ray surfaces with undistorted single-crystal lattice beneath for next-generation X-ray crystal optics.


Single-point diamond machining X-ray crystal optics Germanium Micro-Raman spectroscopy Scanning electron microscopy Transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was funded by the Research and Development Operational Program, funded by the European Regional Development Fund (ERDF) ITMS code 26220220170 (0.8); Slovak Research and Development Agency (APVV-14-0745); and Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences (VEGA-2/0092/18).


  1. 1.
    Korytár D, Vagovič V, Ferrari C, Šiffalovič P (2013) X-ray crystal optics based on germanium single crystals. In: Feuerstein EE (ed) Germanium: characteristics, sources and applications. Nova, New York, pp 105–140Google Scholar
  2. 2.
    Hemberg O, Otendal M, Hertz HM (2003) Liquid-metal-jet anode electron-impact x-ray source. Appl Phys Lett 83(7):1483–1485CrossRefGoogle Scholar
  3. 3.
    Bech M, Bunk O, David C, Ruth R, Rifkin J, Loewen R, Feidenhans’l R, Pfeiffer F (2009) Hard X-ray phase-contrast imaging with the compact light source based on inverse Compton X-rays. J Synchrotron Rad 16:43–47CrossRefGoogle Scholar
  4. 4.
    Skarzynski T (2013) Collecting data in the home laboratory: evolution of X-ray sources, detectors and working practices. Acta Cryst D69:1283–1288Google Scholar
  5. 5.
    Vagovič P, Korytár D, Mikulík P, Cecilia A, Ferrari C, Yang Y, Hänschke D, Hamann E, Pelliccia D, Lafford TA, Fiederle M, Baumbach T (2011) In-line Bragg magnifier based on V-shaped germanium crystals. J Synchrotron Rad 18:753–760CrossRefGoogle Scholar
  6. 6.
    Vagovič P, Korytár D, Cecilia A, Hamann E, Švéda L, Pelliccia D, Härtwig J, Zápražný Z, Oberta P, Dolbyna I, Shawney K, Fleschig U, Fiederle M, Baumbach T (2013) High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector. J Synchrotron Rad 20:153–159CrossRefGoogle Scholar
  7. 7.
    Vagovič P, Švéda L, Cecilia A, Hamann E, Pelliccia D, Gimenez EN, Korytár D, Pavlov KM, Zápražný Z, Zuber M, Koenig T, Oblinado M, Yashiro W, Momose A, Fiederle M, Baumbach T (2014) X-ray Bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval. Opt Express 22:21508–21520CrossRefGoogle Scholar
  8. 8.
    Zaťko B, Zápražný Z, Jakůbek J, Šagátová A, Boháček P, Sekáčová M, Korytár D, Nečas V, Žemclička J, Mora Y, Pichotka M (2018) Imaging performance of a Timepix detector based on semi-insulating GaAs. JINST 13:c01034CrossRefGoogle Scholar
  9. 9.
    Zaťko B, Kubanda D, Žemlicka J, Šagátová A, Zápražný Z, Boháček B, Necas V, Mora Y, Pichotka M, Dudák J (2018) First tests of Timepix detectors based on semi- insulating GaAs matrix of different pixel size. JINST 13:c02013CrossRefGoogle Scholar
  10. 10.
    Sparks RG, Paesler MA (1988) Micro-Raman analysis of stress in machined silicon and germanium. Prec Eng 10(4):191–198CrossRefGoogle Scholar
  11. 11.
    Blake PN (1990) Ductile-regime machining of germanium and silicon. J Am Ceram Soc 73(4):949–957CrossRefGoogle Scholar
  12. 12.
    Blackley WS, Scattergood RO (1991) Ductile-regime machining model for diamond turning of brittle materials. Prec Eng 13(2):95–103CrossRefGoogle Scholar
  13. 13.
    Morris JC, Callahan DL (1995) Origins of the ductile regime in single-point diamond turning of semiconductors. J Am Ceram Soc 78(8):2015–2020CrossRefGoogle Scholar
  14. 14.
    Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. CIRP Ann 47(1):45–49CrossRefGoogle Scholar
  15. 15.
    Jasinevicius RG, Porto Arthur JV, Duduch JG, daSilva Helder AT, Pagotto CR (1999) Ductile mode chip removal in ultraprecision diamond turning of monocrystalline silicon. In 15th Brazilian congress of mechanical engineering, Sao Paulo. Accessed 16 Mar 2015
  16. 16.
    Liu K, Li XP (2001) Ductile cutting of tungsten carbide. J Mater Process Technol 113:348–354CrossRefGoogle Scholar
  17. 17.
    Jasinevicius RG, Duduch JG, Porto Arthur JV (2001) Investigation on diamond turning of silicon crystal - generation mechanism of surface cut with worn tool. J Braz Soc Mech Sci 23(2):241–252CrossRefGoogle Scholar
  18. 18.
    Chao CL, Ma KJ, Liu DS, Bai CY, Shy TL (2002) Ductile behaviour in single-point diamond-turning of single-crystal silicon. J Mater Process Technol 127:187–190CrossRefGoogle Scholar
  19. 19.
    Yan J et al (2004) Experimental study on the ultraprecision ductile machinability of single-crystal germanium. JSME Int J Ser C 47(1):29–36MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu K, Li X (2004) Nanometer-scale ductile cutting of tungsten carbide. J of Manuf Processes 6(2):187–195CrossRefGoogle Scholar
  21. 21.
    Zápražný Z, Korytár D, Jergel M, Šiffalovič P, Dobročka E, Vagovič P, Ferrari C, Mikulik P, Demydenko M, Mikloška M (2015) Calculations and surface quality measurements of high asymmetry angle X-ray crystal monochromators for advanced Xray imaging and metrological applications. Opt Eng 54(3):035101CrossRefGoogle Scholar
  22. 22.
    Zápražný Z, Korytár D, Jergel M, Šiffalovič P, Halahovets Y, Kečkéš J, Maťko I, Ferrari C, Vagovič P, Mikloška M (2016) Nano-machining for advanced X-ray crystal optics. AIP Conf Proc 1764(1):020005CrossRefGoogle Scholar
  23. 23.
    Korytár D, Mikloška M, Halahovets Y, Jergel M, Šiffalovič P, Zápražný Z, Ferrari C (2015) Nanomachining of hard X-ray crystal optics. DGaO Proc 116(c26)Google Scholar
  24. 24.
    Jergel M, Vegso K, Šiffalovič P, Halahovets Y, Korytár D, Zápražný Z, Vagovič P (2015) Crystal X-ray optics for metrology and imaging. Materials Structure in Chemistry, Biology, Physics and Technology 22(3):137–138. (
  25. 25.
    Korytár D, Ferrari C, Zápražný Z, Jergel M, Šiffalovič P, Halahovets Y, Kečkéš J, Vagovič P, Kuzma D (2016) Recent progress in design and technology of channel-cut monochromators. Materials Structure in Chemistry, Biology, Physics and Technology 23(3):315–316. (PB28)
  26. 26.
    Parks RE (1994) Fabrication of infrared optics. Opt Eng 33(3):685–691CrossRefGoogle Scholar
  27. 27.
    Jergel M, Halahovets Y, Maťko I, Korytár D, Zápražný Z, Hagara J, Nádaždy P, Šiffalovič P, Kečkéš J, Majková E (2018) Finishing of Ge nanomachined surfaces for X-ray crystal optics. Int J Adv Manuf Technol 96(9–12):3603–2617. CrossRefGoogle Scholar
  28. 28.
    Li X (2009) Ductile mode cutting of brittle materials: mechanism, chip formation and machined surfaces. In: Davim JP, Jackson MJ (eds) Nano and micromachining. ISTE. Wiley, pp 27–40Google Scholar
  29. 29.
    Korytár D, Zápražný Z, Ferrari C, Frigeri C, Jergel M, Maťko I, Kečkéš J (2018) Cross-sectional TEM study of subsurface damage in SPDT machining of germanium optics. Appl Opt 57(8):1940–1943CrossRefGoogle Scholar
  30. 30.
    Whitmore LC (1994) Microscopy of nanomachined silicon. Dissertation, University of SurreyGoogle Scholar
  31. 31.
    Li Z, Zhang X (2017) Subsurface deformation of germanium in ultraprecision cutting: characterization of micro-Raman spectroscopy. Int J Adv Manuf Technol 91(1):213–225CrossRefGoogle Scholar
  32. 32.
    Yan J, Syoji K, Kuriyagawa T, Suzuki H (2002) Ductile regime turning at large tool feed. J Mater Process Tech 121:363–372CrossRefGoogle Scholar
  33. 33.
    Goel S, Luo X, Agrawal A, Reuben RL (2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tool Manu 88:131–164CrossRefGoogle Scholar
  34. 34.
    Zhang Z, Wang B, Kang R, Zhang G, Guo D (2015) Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann Manuf Technol 64:349–352CrossRefGoogle Scholar
  35. 35.
    Cheng K, Huo D (2013) Micro cutting: fundamentals and applications. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  36. 36.
    Zhang Z, Huang S, Wang S, Wang B, Bai Q, Zhang B, Kang R, Guo D (2017) A novel approach of high-performance grinding using developed diamond wheels. Int J Adv Manuf Technol 91:3315–3326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Zdenko Zápražný
    • 1
    Email author
  • Dušan Korytár
    • 1
    • 2
  • Matej Jergel
    • 3
  • Yuriy Halahovets
    • 3
  • Mário Kotlár
    • 4
  • Igor Maťko
    • 3
  • Jakub Hagara
    • 3
  • Peter Šiffalovič
    • 3
  • Jozef Kečkéš
    • 5
    • 6
  • Eva Majková
    • 3
  1. 1.Institute of Electrical EngineeringSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Integra TDS s. r. oPiešťanySlovakia
  3. 3.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  4. 4.Slovak University of TechnologyUniversity Science Park Bratislava CentreBratislavaSlovakia
  5. 5.Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesLeobenAustria
  6. 6.Department of Materials PhysicsMontanuniversität LeobenLeobenAustria

Personalised recommendations