Investigation on a novel surface microstructure wire electrode for improving machining efficiency and surface quality in WEDM

  • Zhi Chen
  • Yanming ZhangEmail author
  • Guojun Zhang
  • Wenyuan Li


Wire electrode is one of the key factors in determining the machining performance of wire electrical discharge machining (WEDM), and developing high-performance wire electrode is an effective method for meeting the ever-increasing requirement of modern manufacturing industries. In this paper, a novel surface microstructure wire electrode (SMWE) is proposed to enhance the performance of WEDM. Experiment data demonstrate that, compared with brass wire electrode and zinc-coated wire electrode, SMWE increases machining efficiency by 23.9–77.8% for Inconel 718 and 14.8–38.6% for Ti6Al4V, and decreases surface roughness by 11–20% for Inconel 718 and 7–10% for Ti6Al4V, respectively. Besides, SMWE can also obtain smoother surface topography, thinner recast layer, and narrower surface cracks. Furthermore, the improvement mechanism of SMWE is revealed from different aspects. It can be found that SMWE can shorten discharge gap breaking downtime, avoid the occurrence of sparks at the same point, and promote more removed debris and heat energy to be brought out. In a word, this proposed SMWE has good popularization value for application in practical industries, and this study provides a new idea for developing high-performance wire electrode.


WEDM Surface microstructure composite wire electrode Machining efficiency Surface roughness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This research is supported by National Natural Science Foundation of China (Grant No. 51805552) and the Project of State Key Laboratory of High Performance Complex Manufacturing, Central South University No. ZZYJKT2018-10.


  1. 1.
    Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300CrossRefGoogle Scholar
  2. 2.
    Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44(12–13):1247–1259CrossRefGoogle Scholar
  3. 3.
    Tosun N, Cogun C (2003) An investigation on wire wear in WEDM. J Mater Process Technol 134(3):273–278CrossRefGoogle Scholar
  4. 4.
    Rozenek M, Kozak J, Dabrowski L et al (2001) Electrical discharge machining characteristics of metal matrix composites. J Mater Process Technol 109(3):367–370CrossRefGoogle Scholar
  5. 5.
    Li L, Wong YS, Fuh J, Lu L (2001) EDM performance of TiC/copper-based sintered electrodes. Mater Des 22(8):669–678CrossRefGoogle Scholar
  6. 6.
    Zhang G, Chen Z, Zhang Z, Huang Y, Ming W, Li H (2014) A macroscopic mechanical model of wire electrode deflection considering temperature increment in MS-WEDM process. Int J Mach Tools Manuf 78(3):41–53CrossRefGoogle Scholar
  7. 7.
    Mahapatra SS, Patnaik A (2007) Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int J Adv Manuf Technol 34(9–10):911–925CrossRefGoogle Scholar
  8. 8.
    Kuriakose S, Shunmugam MS (2005) Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. J Mater Process Technol 170(1–2):133–141CrossRefGoogle Scholar
  9. 9.
    Kuriakose S, Shunmugam MS (2004) Characteristics of wire-electro discharge machined Ti-6Al-4V surface. Mater Lett 58(17–18):2231–2237CrossRefGoogle Scholar
  10. 10.
    Poroś D, Zaborski S (2009) Semi-empirical model of efficiency of wire electrical discharge machining of hard-to-machine materials. J Mater Process Technol 209(3):1247–1253CrossRefGoogle Scholar
  11. 11.
    Muthuramalingam T, Ramamurthy A, Sridharan K, Ashwin S (2018) Analysis of surface performance measures on WEDM processed titanium alloy with coated electrodes. Mater Res Express 5(12):126503CrossRefGoogle Scholar
  12. 12.
    Saha A, Mondal SC (2016) Multi-objective optimization in WEDM process of nanostructured hardfacing materials through hybrid techniques. Measurement 94:46–59CrossRefGoogle Scholar
  13. 13.
    Sharma P, Chakradhar D, Narendranath S (2016) Effect of wire material on productivity and surface integrity of WEDM-processed Inconel 706 for aircraft application. J Mater Eng Perform 25(9):1–10CrossRefGoogle Scholar
  14. 14.
    Manjaiah M, Narendranath S, Basavarajappa S, Gaitonde VN (2015) Effect of electrode material in wire electro discharge machining characteristics of Ti50Ni50-xCux shape memory alloy. Precis Eng 41:68–77CrossRefGoogle Scholar
  15. 15.
    Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf 100:25–54CrossRefGoogle Scholar
  16. 16.
    Dudzinski D, Devillez A, Moufki A, Larrouquère D, Zerrouki V, Vigneau J (2004) A review of developments towards dry and high speed machining of Inconel 718 alloy. Int J Mach Tools Manuf 44(4):439–456CrossRefGoogle Scholar
  17. 17.
    Wang CC, Chow HM, Yang LD, Lu CT (2009) Recast layer removal after electrical discharge machining via Taguchi analysis: a feasibility study. J Mater Process Technol 209(8):4134–4140CrossRefGoogle Scholar
  18. 18.
    Rahman M, Seah W, Teo TT (1997) The machinability of Inconel 718. J Mater Process Technol 63(1):199–204CrossRefGoogle Scholar
  19. 19.
    Zhang Z, Huang H, Ming W, Xu Z, Huang Y, Zhang G (2016) Study on machining characteristics of WEDM with ultrasonic vibration and magnetic field assisted techniques. J Mater Process Technol 234:342–352CrossRefGoogle Scholar
  20. 20.
    Plaza S, Ortega N, Sanchez JA, Pombo I, Mendikute A (2009) Original models for the prediction of angular error in wire-EDM taper-cutting. Int J Adv Manuf Technol 44(5–6):529–538CrossRefGoogle Scholar
  21. 21.
    Maekawa K, Kitagawa T, Kubo A (1997) Temperature and wear of cutting tools in high speed machining of Inconel and Ti-6Al-6 V-2Sn. Wear 202(2):142–148CrossRefGoogle Scholar
  22. 22.
    Dibitonto DD, Eubank PT, Patel MR et al (1989) Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J Appl Phys 66(9):4104–4111CrossRefGoogle Scholar
  23. 23.
    Shabgard M, Oliaei SNB, Seyedzavvar M, Najadebrahimi A (2011) Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process. J Mech Sci Technol 25(12):3173–3183CrossRefGoogle Scholar
  24. 24.
    Pan H, Liu Z, Li C et al (2017) Enhanced debris expelling in high-speed wire electrical discharge machining. Int J Adv Manuf Technol 93(5–8):1–8Google Scholar
  25. 25.
    Yue X, Yang X, Kunieda M (2018) Influence of metal vapor jets from tool electrode on material removal of workpiece in EDM. Precis Eng 53:278–288CrossRefGoogle Scholar
  26. 26.
    Izquierdo B, Sánchez JA, Plaza S, Pombo I, Ortega N (2009) A numerical model of the EDM process considering the effect of multiple discharges. Int J Mach Tools Manuf 49(3–4):220–229CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.School of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations