Advertisement

The influence of rolling mill process parameters on roll thermal fatigue

  • Felipe WeidlichEmail author
  • Ana Paola Villalva Braga
  • Luiz Gustavo Del Bianchi da Silva Lima
  • Mário Boccalini Júnior
  • Roberto Martins Souza
ORIGINAL ARTICLE
  • 13 Downloads

Abstract

This study analyzes the impact of operational parameters of hot rolling mill in the degradation process of a roll surface by thermal fatigue. A methodology was developed to determine a coefficient that could identify when operational parameters become crucial to initiate this degradation process. This new coefficient, named the surface damage coefficient (κ), is correlated with the calculated plastic strain, allowing inclusion in a model to predict the roll life. Experiments were conducted in three industrial rolling mills, and the results showed that for a κ value above 375, it is possible to identify failure by thermal fatigue, while values below this limit indicate that other damage mechanisms predominate.

Keywords

Thermal fatigue Rolling mill rolls Rolling parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spuzic S, Strafford KN, Subramanian C, Savage G (1994) Wear of hot rolling mill rolls: an overview. Wear 176:261–271CrossRefGoogle Scholar
  2. 2.
    Wright B (2014) Thermal behavior of work rolls in the hot mill rolling process. Ph.D. Thesis. The University of Swansea, United KingdomGoogle Scholar
  3. 3.
    Benasciutti D, Brusa E, Bazzaro G (2010) Finite elements prediction of thermal stresses in work roll of hot rolling Mills. Procedia Eng 2:707–716CrossRefGoogle Scholar
  4. 4.
    Venter R, Abd-Rabbo A (1980) Modelling of the rolling process I—inhomogeneous deformation model. Int J Mech Sci 22:83–92CrossRefGoogle Scholar
  5. 5.
    Devadas C (1989) The Prediction of the Evolution of Microstructure During Hot Rolling of Steel Strip. Ph.D. Thesis. The University of British Columbia, Vancouver CanadaGoogle Scholar
  6. 6.
    Park J Π, Kim CK, Lee S (2003) Evaluation of thermal fatigue properties of hss roll materials. metal konference, czech republicGoogle Scholar
  7. 7.
    Persson A, Hogmark S, Bergström J (2004) Simulation and evaluation of thermal fatigue cracking of hot work tool steels. Int J Fatigue 26:1095–1107CrossRefGoogle Scholar
  8. 8.
    Le Roux S, Medjedoub F, Dour G, RÉzaÏ-Aria F (2013) Role of heat-flux density and mechanical loading on the microscopic heat-checking of high temperature tool steel under thermal fatigue experiments. Int J Fatigue 51:15–25CrossRefGoogle Scholar
  9. 9.
    Stevens PG, Ivens KP, Harper P (1971) Increasing work-roll life by improved roll-cooling practice. J Iron Steel Inst 1–11Google Scholar
  10. 10.
    Tseng AA (1984) A numerical heat transfer analysis of strip rolling. J Heat Transf 106:512–517CrossRefGoogle Scholar
  11. 11.
    Ye X (1990) Thermal crown development in hot strip mill work rolls and the role of spray cooling. Master Dissertation. The University of British Columbia, Vancouver CanadaGoogle Scholar
  12. 12.
    Ryu JH, Kwon O, Lee PJ, Kim YM (1992) Evaluation of the finishing roll surface deterioration at hot strip mill. ISIJ Int 32(11):1221–1223CrossRefGoogle Scholar
  13. 13.
    Serajzadeh S (2008) Effects of rolling parameters on work-roll temperature distribution in the hot rolling of steels. Int J Adv Manuf Technol 35:859–866CrossRefGoogle Scholar
  14. 14.
    Maccagno TM, Jonas JJ, Yue S, Mccrady BJ, Slobodian R, Deeks D (1996) Determination of recrystallization stop temperature from rolling mill logs and comparison with laboratory simulation results. ISIJ Int 34:917–922CrossRefGoogle Scholar
  15. 15.
    Sekimoto Y, Tanaka M, Sawada R, Koga M (1977) Effects of rolling condition on the surface temperature of work roll in hot-strip mill. South East Asia Iron & Steel Institute, Shah Alam, pp 48–57Google Scholar
  16. 16.
    Jin DQ, Hernandez VH, Samarasekera IV (1996) Integrated process model for the hot rolling of plain carbon steel. Proceedings of the Second International Conference Modeling of Metal Rolling Processes, London, UK, December, (36–58)Google Scholar
  17. 17.
    Serajzadeh S, Mucciardi F (2003) Modeling the work-roll temperature variation at unsteady state condition. Model Simul Mater Sci Eng 11:179–194CrossRefGoogle Scholar
  18. 18.
    Krzyzanowski M, Beynon JH (2016) Interfacial heat transfer during hot metal forming operations assuming scale failure effects. J Mater Sci Technol 32:407–417Google Scholar
  19. 19.
    Maim S, Norström LA (1979) Material-related model for thermal fatigue applied to tool steels in hot-work applications. J Met Sci 13:544–550Google Scholar
  20. 20.
    ASM Metals Handbook Volume 19 – Fatigue and fracture, 1996Google Scholar
  21. 21.
    Halford GR (1986) Low-cycle thermal fatigue. NASA Technical Memorandum 87225. Lewis Research Center, Cleveland OhioGoogle Scholar
  22. 22.
    Li G, Xiangzhi L, Wu J (1998) Study of the thermal fatigue crack initial life of h13 and h21 steels. J Mater Process Technol 74:23–26CrossRefGoogle Scholar
  23. 23.
    Lima LG, GonÇalves A, Braga APV, Boccalini M, Souza RM (2016) Coupled experimental-numerical analysis of Wear in hot-rolling Mills. 10th international tooling conferenceGoogle Scholar
  24. 24.
    Juran JM, Gryna FM (1951) Juran’s quality control handbook, Fourth edn. McGraw-Hill Book CompanyGoogle Scholar
  25. 25.
    Lima LG (2018) Experimental analysis and numerical modelling of the influence of the oxidation on the thermal fatigue of hot rolling rolls. Maters dissertation. University of São Paulo, BrazilGoogle Scholar
  26. 26.
    Tseng AA, Lin FH, Gunderia AS, Ni DS (1989) Roll cooling and its relationship to roll life. Metall Trans A 20A:2305–2320CrossRefGoogle Scholar
  27. 27.
    Tseng AA (1999) Thermal modeling of roll and strip interface in rolling processes: part 1- review. Journal of Numerical Heat Transfer, Part A: Applications 35:115–133Google Scholar
  28. 28.
    Roberts WL (1983) Hot rolling of steel. Manuf Eng Mater Process 10:779–783Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Felipe Weidlich
    • 1
    Email author
  • Ana Paola Villalva Braga
    • 2
  • Luiz Gustavo Del Bianchi da Silva Lima
    • 3
  • Mário Boccalini Júnior
    • 2
  • Roberto Martins Souza
    • 3
  1. 1.Gerdau Special SteelPindamonhangabaBrazil
  2. 2.Institute for Technological Research of São PauloSao PauloBrazil
  3. 3.Surface Phenomena LaboratoryPolythecnic School of University of São PauloSao PauloBrazil

Personalised recommendations