Friction capabilities of graphite-based lubricants at room and over 1400 K temperatures

  • A. J. Sánchez EgeaEmail author
  • V. Martynenko
  • G. Abate
  • N. Deferrari
  • D. Martinez Krahmer
  • L. N. López de Lacalle


The present work investigates the lubricant capabilities at room and hot-forging temperatures (>1400 K) of three types of lubricants with two different graphite concentrations (8% and 12%). These lubricants are distinguished by measuring the percentage of chemical elements and average size of graphite particles. Later, two standardized methods, i.e., pin-on disc and ring test, are utilized to assess the main friction differences under laboratory and real industry conditions, respectively. The results exhibit that the friction values at room temperature are lower for lubricant B, no matter which type of graphite concentration is used, whereas at hot-forging temperatures, greater percentage of graphite enhances lower frictional values when higher deformations are assessed. Additionally, the ring tests performed at hot-forging temperatures show significant tribology differences when the degree of deformation reaches 50%. Particularly, the lubricant B shows the lowest values of friction coefficients of 0.22 and 0.21 for 8% and 12% of graphite concentration, respectively. Therefore, it can be concluded that the selection of a proper type of lubricant (regarding chemical composition and size of solid suspension) and the graphite concentration are sensitive parameters, when it comes to achieve different bulk deformations combined with extreme temperatures like in hot-forging process.


Graphitic lubricant Extreme temperatures Friction coefficients Ring test Hot-forging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



CRAFMSA S.A. is acknowledged for their support and contribution to this work. We give thanks to Soledad Pereda from INTI-Mecánica for the valuable support with the electronic microscopy and X-ray spectroscopy analysis.

Funding information

This work is supported by the Ministry of Economy and Competitiveness of Spain (reference project: FJCI-2016-29297), the National Council for Scientific and Technological Development of Chile (Fondecyt project 3180006), and the Aeronautics Advanced Manufacturing Center (CFAA) of Bilbao.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Altan T, Ngaile G, Shen G (2004) Cold and hot forging: fundamentals and applications. ASM International, ISBN: 978-0-87170-805-2Google Scholar
  2. 2.
    Sofuoglu H, Gedikli H, Rasty J (2000) Determination of friction coefficient by employing the ring compression test. J Eng Mater Technol 123(3):338–348. CrossRefGoogle Scholar
  3. 3.
    Camacho AM, Torralvo AI, Bernal C, Sevilla L (2013) Investigations on friction factors in metal forming of industrial alloys. Procedia Eng 63:564–572. CrossRefGoogle Scholar
  4. 4.
    González HA, Sánchez Egea AJ, Travieso-Rodríguez JA, Llumà i Fuentes J, Jorba Peiró J (2018) Estimation of the polishing time for different metallic alloys in surface texture removal. Mach Sci Technol 22:1–13. CrossRefGoogle Scholar
  5. 5.
    Valero J, Marín MM, Camacho AM (2015) Influence of load application methodology in the performance of ring compression tests. Procedia Eng 132:306–312. CrossRefGoogle Scholar
  6. 6.
    Camacho AM, Veganzones M, Claver J, Martín F, Sevilla L, Ángel Sebastián M (2016) Determination of actual friction factors in metal forming under heavy loaded regimes combining experimental and numerical analysis. Materials 9(9), 751):1–9. CrossRefGoogle Scholar
  7. 7.
    Kim H, Altan T (2010) Tribology in forming advanced high strength steels: evaluation of lubricants, tool materials and coatings for reducing galling. LAP Lambert academic publishing, Saarbrücken ISBN: 978-3-8383-0590-5Google Scholar
  8. 8.
    Oliveira RA, Alguero Koller L, Schaeffer L (2003) Evaluation of two commercially-available lubricants by means of ring test to AA 6061 F aluminum alloys. Mater Res 6(4):591–597. CrossRefGoogle Scholar
  9. 9.
    Mirahmadi SJ, Hamedi M, Cheraghzadeh M (2015) Investigating friction factor in forging of Ti-6Al-4V through isothermal ring compression test. Tribol Trans 0:1–7. Google Scholar
  10. 10.
    Ohdar RK, Talukdar P, Israr Equbal M (2015) Evaluation of friction coefficient of 38MnVS6 medium carbon micro-alloyed steel in hot forging process by using ring compression test. Technology Letters 2(3):12–16 ISSN: 2348–8131Google Scholar
  11. 11.
    Shahriari D, Amiri A, Sadeghi MH (2010) Study on hot ring compression test of Nimonic 115 superalloy using experimental observations and 3D FEM simulation. JMEPEG 19:633–642. CrossRefGoogle Scholar
  12. 12.
    Hu C, Ou H, Zhao Z (2015) An alternative evaluation method for friction condition in cold forging by ring with boss compression test. J Mater Process Technol 224:18–25. CrossRefGoogle Scholar
  13. 13.
    Hu C, Yin Q, Zhao Z, Ou H (2017) A new measuring method for friction factor by using ring with inner boss compression test. Int J Mech Sci 123:133–140. CrossRefGoogle Scholar
  14. 14.
    Sánchez Egea AJ, Deferrari N, Abate G, Martínez Krahmer D, López de Lacalle LN (2018) Short-cut method to assess a gross available energy in a medium-load screw friction press. Metals 8(3), 173):1–12. CrossRefGoogle Scholar
  15. 15.
    Cristino VAM, Rosa PAR, Martins PAF (2015) The role of interfaces in the evaluation of friction by ring compression testing. Exp Tech 39:47–56. CrossRefGoogle Scholar
  16. 16.
    Cristino VAM, Rosa PAR, Martins PAF (2011) Surface roughness and material strength of tribo-pairs in ring compression tests. Tribol Int 44:134–143. CrossRefGoogle Scholar
  17. 17.
    Matsumoto R, Harada S, Utsunomiya H (2015) Influence of oxide scale formed on chrome steel surface in steam atmosphere on deformation behavior of chrome steel in hot ring compression. ISIJ Int 55(8):1711–1720.
  18. 18.
    Zhu Y, Zeng W, Ma X, Tai Q, Li Z, Li X (2011) Determination of the friction factor of Ti-6Al-4V titanium alloy in hot forging by means of ring-compression test using FEM. Tribol Int 44:2074–2080. CrossRefGoogle Scholar
  19. 19.
    Dohda K, Boher C, Rezai-Aria F, Mahayotsanun N (2015) Tribology in metal forming at elevated temperatures. Friction 3(1):1–27. CrossRefGoogle Scholar
  20. 20.
    Li LX, Peng DS, Liu JA, Liu ZQ (2001) An experiment study of the lubrication behavior of graphite in hot compression tests of Ti–6Al–4V alloy. J Mater Process Tech 112(1):1–5. CrossRefGoogle Scholar
  21. 21.
    Asai K, Kitamura K (2014) Estimation of frictional property of lubricants for hot forging of steel using low-speed ring compression test. Procedia Engineering 81:1970–1975. CrossRefGoogle Scholar
  22. 22.
    Asai K, Kitamura K, Yukawa N, Hayashi N (2017) Estimation of friction by using improved calibration curves of ring compression test for hot forging of steel. Procedia Engineering 207:2280–2285. CrossRefGoogle Scholar
  23. 23.
    Sánchez Egea AJ, Martynenko V, Martínez Krahmer D, López de Lacalle LN, Benítez A, Genovese G (2018) On the cutting performance of segmented diamond blades when dry-cutting concrete. Materials 11:1–12. CrossRefGoogle Scholar
  24. 24.
    Gunda RK, Narala SKR (2016) Tribological studies to analyze the effect of solid lubricant particle size on friction and wear behaviour of Ti-6Al-4V alloy. Surf Coat Technol 308:203–212. CrossRefGoogle Scholar
  25. 25.
    Devendra Singh GD, Sivakumar Konathala LN, Prasad VVDN (2016) Friction reduction capabilities of silicate compounds used in an engine lubricant on worn surfaces. Adv Tribol 1901493:1–10. CrossRefGoogle Scholar
  26. 26.
    Yang L, Shivpuri R (2007) An isothermal finite difference model for droplet spread in the spraying of hot die surfaces with water-based graphite lubricants. J Manuf Sci Eng 129(5):874–884. CrossRefGoogle Scholar
  27. 27.
    Male AT, Cocroft MG (1964) A method for the determination of the coefficient of friction of metals under condition of bulk plastic deformation. J Inst Metals 93:38–46Google Scholar
  28. 28.
    Bartz WJ (1972) Some investigations on the influence of particle size on the lubricating effectiveness of molybdenum disulfide. ASLE Trans 15(3):207–215. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • A. J. Sánchez Egea
    • 1
    • 2
    Email author
  • V. Martynenko
    • 3
    • 4
  • G. Abate
    • 3
    • 4
  • N. Deferrari
    • 3
  • D. Martinez Krahmer
    • 3
    • 4
  • L. N. López de Lacalle
    • 2
  1. 1.Department of Mechanical and Metallurgical EngineeringPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Department of Mechanical Engineering, Faculty of Engineering of BilbaoAeronautics Advanced Manufacturing Center (CFAA)BilbaoSpain
  3. 3.Centro de Investigación y Desarrollo en MecánicaInstituto Nacional de Tecnología Industrial INTISan MartinArgentina
  4. 4.Faculty of EngineeringUniversidad Nacional de Lomas de ZamoraLomas de ZamoraArgentina

Personalised recommendations