Advertisement

Minimum invasive production-related SLS specimen manufacturing for interface characterization of hybrid materials made by RTM

  • Patrick HerganEmail author
  • Christoph Lechner
  • Ewald Fauster
  • Gerald Pilz
  • Ralf Schledjewski
Open Access
ORIGINAL ARTICLE
  • 34 Downloads

Abstract

This work shows a new way of single lap shear specimen production for hybrid metal-composite materials, which can be used to characterize process-induced interface property variations. Due to this special procedure, the specimen manufacturing can be done production-related and with a homogenization of the thermal stresses occurring in the joint area of the hybrid at each specimen. The exemption process of the specimen is kept in a minimum invasive way, not affecting the interface in the tested zone. The influence of the metal surface structure specifically created by micro form milling as well as the influence of the curing temperature on the maximum shear strength of the interface, were investigated. Finally, the driving failure mechanisms were identified and described.

Keywords

Hybrid metal-CFRP composites Interface characterization Single lap shear test Resin transfer molding Processing of composites 

Notes

Acknowledgements

Open access funding provided by Montanuniversität Leoben.

Funding

This work was supported by the Austrian Ministry for Transport, Innovation and Technology in the frame of the program “Produktion der Zukunft,” administered by the Austrian Research Promotion Agency under Grant [848666].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Ashby MF (2005) Hybrids to fill holes in material property space. Philos Mag 85(26–27):3235–3257.  https://doi.org/10.1080/14786430500079892 CrossRefGoogle Scholar
  2. 2.
    Wang Z, Bobbert M, Dammann C et al (2016) Influences of interface and surface pretreatment on the mechanical properties of metal-CFRP hybrid structures manufactured by resin transfer moulding. IJAUTOC 2(3/4):272.  https://doi.org/10.1504/IJAUTOC.2016.10005305 CrossRefGoogle Scholar
  3. 3.
    Matsuzaki R, Shibata M, Todoroki A (2008) Reinforcing an aluminum/GFRP co-cured single lap joint using inter-adherend fiber. Compos A: Appl Sci Manuf 39(5):786–795.  https://doi.org/10.1016/j.compositesa.2008.02.002 CrossRefGoogle Scholar
  4. 4.
    Wang Z, Lauter C, Sanitther B et al (2016) Manufacturing and investigation of steel-CFRP hybrid pillar structures for automotive applications by intrinsic resin transfer moulding technology. IJAUTOC 2(3/4):229.  https://doi.org/10.1504/IJAUTOC.2016.084322 CrossRefGoogle Scholar
  5. 5.
    Hergan P, Beter J, Stelzer S, Fauster E, Schledjewski R (2018) Influence of processing parameters on quality factors of one-shot hybrid structures made by RTM. Prod Eng 12:185–194.  https://doi.org/10.1007/s11740-018-0805-4 CrossRefGoogle Scholar
  6. 6.
    Fauster E, Hergan P, Schledjewski R (2016) HybridRTM - Quality Controlled Manufacturing of Hybrid Material Composites through Resin Transfer Moulding. In: Proceedings of Euro Hybrid Materials & Structures 2016 KaiserslauternGoogle Scholar
  7. 7.
    Guo Z-S, Liu L, Zhang B-M et al (2009) Critical void content for thermoset composite laminates. J Compos Mater 43(17):1775–1790.  https://doi.org/10.1177/0021998306065289 CrossRefGoogle Scholar
  8. 8.
    Park SY, Choi WJ, Choi HS, Kwon H (2010) Effects of surface pre-treatment and void content on GLARE laminate process characteristics. J Mater Process Technol 210(8):1008–1016.  https://doi.org/10.1016/j.jmatprotec.2010.01.017 CrossRefGoogle Scholar
  9. 9.
    Carraro PA, Maragoni L, Quaresimin M (2015) Influence of manufacturing induced defects on damage initiation and propagation in carbon/epoxy NCF laminates. Adv Manuf: Polymer Composites Sci 1(1):44–53.  https://doi.org/10.1179/2055035914Y.0000000004 CrossRefGoogle Scholar
  10. 10.
    Ostapiuk M, Surowska B, Bieniaś J (2014) Interface analysis of fiber metal laminates. Composite Interfaces 21(4):309–318.  https://doi.org/10.1080/15685543.2014.854527 CrossRefGoogle Scholar
  11. 11.
    Masuzawa T (2000) State of the art of micromachining. CIRP Ann Manuf Technol 49(2):473–488.  https://doi.org/10.1016/S0007-8506(07)63451-9 CrossRefGoogle Scholar
  12. 12.
    Xie J, Zhuo YW, Tan TW (2011) Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel. Precision engineering-journal of the international societies for precision engineering and nanotechnology. Precis Eng 35:173–182.  https://doi.org/10.1016/j.precisioneng.2010.09.002 CrossRefGoogle Scholar
  13. 13.
    Xie J, Li YH, Yang LF (2015) Study on 5-axial milling on microstructured freeform surface using the macro-ball cutter patterned with micro-cutting-edge array. CIRP Ann 64(1):101–104.  https://doi.org/10.1016/j.cirp.2015.04.075 CrossRefGoogle Scholar
  14. 14.
    DIN EN 1465:2009 Adhesives - Determination of tensile lap-shear strength of bonded assembliesGoogle Scholar
  15. 15.
    ASTM D1002–01 Standard Test Method for Apparent Shear Strength of Single-Lap Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal)Google Scholar
  16. 16.
    ASTM D3163 - 01 Standard Test Method for Determining Strength of Adhesively Bonded Rigid Plastic Lap-Shear Joints in Shear by Tension LoadingGoogle Scholar
  17. 17.
    ASTM D5868 - 01 Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) BondingGoogle Scholar
  18. 18.
    BS EN 1465:2009 Adhesives—Determination of Tensile Lap-Shear Strength of Rigid-to-Rigid Bonded AssembliesGoogle Scholar
  19. 19.
    ISO 11003-2 D3528 - 96 Standard Test Method for Strength Properties of Double Lap Shear Adhesive JointsGoogle Scholar
  20. 20.
    İşcan B (2015) Strength of lap joints with embedded cover plate. J Mech Sci Technol 29(5):2105–2110.  https://doi.org/10.1007/s12206-015-0432-3 CrossRefGoogle Scholar
  21. 21.
    Al-Zubaidy H, Al-Mahaidi R, Zhao X-L (2012) Experimental investigation of bond characteristics between CFRP fabrics and steel plate joints under impact tensile loads. Compos Struct 94(2):510–518.  https://doi.org/10.1016/j.compstruct.2011.08.018 CrossRefGoogle Scholar
  22. 22.
    Colombi P, Fava G (2012) Fatigue behaviour of tensile steel/CFRP joints. Compos Struct 94(8):2407–2417.  https://doi.org/10.1016/j.compstruct.2012.03.001 CrossRefGoogle Scholar
  23. 23.
    da Silva LFM, Rodrigues TNSS, Figueiredo MAV, de Moura MFSF, Chousal JAG (2006) Effect of adhesive type and thickness on the lap shear strength. J Adhes 82(11):1091–1115.  https://doi.org/10.1080/00218460600948511 CrossRefGoogle Scholar
  24. 24.
    Adams RD, Harris JA (1987) The influence of local geometry on the strength of adhesive joints. Int J Adhes Adhes 7(2):69–80.  https://doi.org/10.1016/0143-7496(87)90092-3 CrossRefGoogle Scholar
  25. 25.
    Brinson HF, Reinhart TJ (1990) Engineered materials handbook. ASM Internat, Metals Park, OhioGoogle Scholar
  26. 26.
    Research ES, Structures TC, Division M (1995) Adhesive Bonding Handbook for Advanced Structural Materials. ESA PSS. ESA Publications Division, NoordwjikGoogle Scholar
  27. 27.
    ISO 11003-2:(2001) Adhesives -- Determination of shear behaviour of structural adhesives -- Part 2: Tensile test method using thick adherendsGoogle Scholar
  28. 28.
    Nawab Y, Jacquemin F, Casari P, Boyard N, Borjon-Piron Y, Sobotka V (2013) Study of variation of thermal expansion coefficients in carbon/epoxy laminated composite plates. Compos Part B 50:144–149.  https://doi.org/10.1016/j.compositesb.2013.02.002 CrossRefGoogle Scholar
  29. 29.
    Kumar D, Singh KK, Zitoune R (2016) Experimental investigation of delamination and surface roughness in the drilling of GFRP composite material with different drills. Advanced Manufacturing: Polymer & Composites Science 2(2):47–56.  https://doi.org/10.1080/20550340.2016.1187434 CrossRefGoogle Scholar
  30. 30.
    Turner J, Scaife RJ, El-Dessouky HM (2015) Effect of machining coolant on integrity of CFRP composites. Advanced Manufacturing: Polymer & Composites Science 1(1):54–60.  https://doi.org/10.1179/2055035914Y.0000000008 CrossRefGoogle Scholar
  31. 31.
    Volkersen O (1953) Die Schubkraftverteilung in Leim-, Niet- und Bolzenverbindungen. Energie und Technik 68–71(103–108):150–154Google Scholar
  32. 32.
    Hahn O, Wender B (1984) Variation der Fügeteil-Elastizitätsmoduln. In: Hahn O, Wender B (eds) Beanspruchungsanalyse von geometrisch und werkstoffmechanisch “unsymmetrischen” Metallklebverbindungen mit der Finite-Element-Methode. VS Verlag für Sozialwissenschaften, Wiesbaden, pp 29–45CrossRefGoogle Scholar
  33. 33.
    Antretter T, Fischer FD, Rammerstorfer FG, Zickler GA (2016) Free edges at bilayered compounds—a short analytical and numerical reconsideration. Arch Appl Mech 86(12):2053–2061.  https://doi.org/10.1007/s00419-016-1171-3 CrossRefGoogle Scholar
  34. 34.
    He X, Wang Y (2014) Stress distribution behavior in single-lap adhesively bonded beams. Strength of Materials 46(6):820–830.  https://doi.org/10.1007/s11223-014-9616-9 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Processing of Composites Group, Department Polymer Engineering and ScienceMontanuniversität LeobenLeobenAustria
  2. 2.Institute for Production Engineering and Laser TechnologyTU WienViennaAustria
  3. 3.Materials Science and Testing of Polymers, Department Polymer Engineering and ScienceMontanuniversität LeobenLeobenAustria

Personalised recommendations