Grinding burn on hardened steel: characterization of onset mechanisms by design of experiments

  • F. Del Re
  • M. Dix
  • F. TagliaferriEmail author


Grinding is a process that can transfer a large amount of energy converted to heat to the component. When the amount of energy is too large, the microstructure of material changes resulting in grinding thermal damages or grinding burns that mostly arise in hardened components. Grinding thermal damages are common and critical issues as they reduce component performance. Grinding burn can shorten the fatigue life and can cause failures in dynamically loaded components. The consequence is unceasing research on monitoring and evaluation of the thermal damage caused by grinding. In order to assess the influence of process parameters and their role on the generation of thermal damage, statistical techniques such as design of experiment (DoE) and analysis of variance (ANOVA) were used. The statistical approach was adopted to elaborate and execute a testing plan and to analyze the collected data. Moreover, the implementation of the response surface methodology (RSM) allowed obtaining regression models and the corresponding surface plots to estimate both the tangential and the normal components of the grinding force. This analysis provided useful information to avoid grinding burn occurrence.


Grinding Grinding burn DoE ANOVA Hardened steel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Toenshoff HK, Friemuth T, Becker JC (2002) Process monitoring in grinding. Ann CIRP 51(2):551–571. CrossRefGoogle Scholar
  2. 2.
    De Aguiar PR, Dotto FRL, Bianchi EC (2005) Study of thresholds to burning in surface grinding process. J Braz Soc Mech Sci 27(2):150–156. Google Scholar
  3. 3.
    Guo C, Malkin S (2000) Energy partition and cooling during grinding. J Manuf Process 2(3):151–157. CrossRefGoogle Scholar
  4. 4.
    Moulik ON, Yang HYT, Chandrasekar S (2001) Simulation of thermal stresses due to grinding. Int J Mech Sci 43(3):831–851. CrossRefzbMATHGoogle Scholar
  5. 5.
    Ozel T, Altan T (2000) Determination of workpiece flow stress and friction at the chip-tool contact for high-speed cutting. Int J Mach Tools Manuf 40(1):133–152. CrossRefGoogle Scholar
  6. 6.
    Klocke F, Beck T, Hoppe S, Krieg T, Muller N (2002) Examples of FEM application in manufacturing technology. J Mater Process Technol 120(1-3):450–457. CrossRefGoogle Scholar
  7. 7.
    Mamalis AG, Kundrak J, Manolakos DE, Gyani K, Markopoulos A (2003) Thermal modeling of surface grinding using implicit finite element techniques. Int J Adv Manuf Technol 21(12):929–934. CrossRefGoogle Scholar
  8. 8.
    Hamdi H, Zahouani H, Bergheau JM (2004) Residual stresses computation in a grinding process. J Mater Process Technol 147(3):277–285. CrossRefGoogle Scholar
  9. 9.
    Jin T, Stephenson DJ (2003) Investigation of the heat partitioning in high efficiency deep grinding. Int J Mach Tools Manuf 43(11):1129–1134. CrossRefGoogle Scholar
  10. 10.
    Bell A, Jin T, Stephenson DJ (2011) Burn threshold prediction for high efficiency deep grinding. Int J Mach Tools Manuf 51(6):433–438. CrossRefGoogle Scholar
  11. 11.
    Malkin S, Guo C (2007) Thermal analysis of grinding. Ann CIRP 56 (2):760–782. CrossRefGoogle Scholar
  12. 12.
    Ghosh S, Chattopadhyay AB, Paul S (2008) Modelling of specific energy requirement during high efficiency deep grinding. Int J Mach Tools Manuf 48(11):1242–1253. CrossRefGoogle Scholar
  13. 13.
    Oliveira JFG, Silva EJ, Guo C, Hashimoto F (2009) Industrial challenges in grinding. Ann CIRP 58 (2):663–680. CrossRefGoogle Scholar
  14. 14.
    Brinkmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister HW, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. Ann CIRP 55(2):667–696. CrossRefGoogle Scholar
  15. 15.
    Doman DA, Warkentin A, Bauer R (2009) Finite element modeling approaches in grinding. Int J Mach Tools Manuf 49(2):109–116. CrossRefGoogle Scholar
  16. 16.
    Palumbo B, Marrone R, De Chiara G (2009) Technological process innovation via engineering and statistical knowledge integration. Springer, Milan. In: Erto P (ed) Statistics for Innovation.
  17. 17.
    Tagliaferri F, Dittrich M, Palumbo B (2015) A systematic approach to design of experiments in Waterjet machining of high performance ceramics. In: Davim JP (ed) Design of Experiment in Production Engineering. amics. Springer, Berlin.
  18. 18.
    Putz M, Tagliaferri F, Dix M, Wertheim R (2015) Methodology for analyzing hybrid cutting processes with thermal assistance. Prod Eng 9(4):537–549. CrossRefGoogle Scholar
  19. 19.
    ISO (2014) Standard 683-17:2014 Heat-treated steels, alloy steels and free-cutting steels, Part 17: Ball and roller bearing steels. International Organization for Standardization. ICS 77.140Google Scholar
  20. 20.
    Coleman DE, Montgomery DC (1993) A systematic approach to planning for a designed industrial experiment. Technometrics 35(1):25–.
  21. 21.
    Rowe WB (2001) Thermal analysis of high efficiency deep grinding. Int J Mach Tools Manuf 41(1):1–19. CrossRefGoogle Scholar
  22. 22.
    Brosse A, Naisson P, Hamdi H, Bergheau JM (2008) Temperature measurement and heat flux characterization in grinding using thermography. J Mater Process Technol 201(1-3):590–595. CrossRefGoogle Scholar
  23. 23.
    Tawakoli T, Westkamper E, Rabiey M, Rasifard A (2007) Influence of the type of coolant lubricant in grinding with CNB tools. Int J Mach Tools Manuf 47(5):734–739. CrossRefGoogle Scholar
  24. 24.
    Montgomery DC (2005) Design and analysis of experiments. Wiley, Hoboken. ISBN 0-471-31649-0zbMATHGoogle Scholar
  25. 25.
    Montgomery DC, Runger GC (2003) Applied statistics and probability for engineers. Wiley, Hoboken. ISBN 0-471-20454-4zbMATHGoogle Scholar
  26. 26.
    Habrat WF (2016) Effect of bond type and process parameters on grinding force components in grinding of cemented carbide. Procedia Eng 149:122–129. CrossRefGoogle Scholar
  27. 27.
    Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, Altman DG (2016) Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol 31(4):337–350. CrossRefGoogle Scholar
  28. 28.
    Arul Saravanapriyan SN, Vijayaraghavan L, Krishnamurthy R (2003) Significance of grinding burn on high steel tool performance. J Mater Process Technol 134(2):166–173. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of Naples Federico IINaplesItaly
  2. 2.Technische Universität ChemnitzInstitute for Machine Tools and Production Processes (IWP)ChemnitzGermany
  3. 3.University Niccolò CusanoRomeItaly

Personalised recommendations