Production of high-performance multi-layer fine-fibrous filter material by application of material extrusion–based additive manufacturing

  • V. A. Beloshenko
  • V. P. Plavan
  • N. M. Rezanova
  • B. M. Savchenko
  • I. VozniakEmail author


This study addresses a new approach to production of multi-layer fine-fibrous filter material by application of material extrusion–based additive manufacturing (MEB-AM). By the example of polypropylene/copolyamide (PP/CPA), the ability of a fibrous composite structure formation in the initial strands is demonstrated. It is shown that a change in the size of filter grid cells and the extrusion pressure allows control of the diameter of PP fibrils. It is found that multi-layered composite films formed by MEB-AM of the strands retain the structure inherent in the strands. A polypropylene precision filter material has been produced by extraction of a matrix polymer from composite films. The achieved filter retention is about 100% (for the particles of 0.3–1.0 μm in size).


Fused deposition modeling Multi-layer fine-fibrous filter material In situ formation of microfibrillar composites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

170_2018_3152_MOESM1_ESM.doc (657 kb)
ESM 1 (DOC 657 kb)


  1. 1.
    Thomas S, Mishra R, Kalarikka N. Micro and nano fibrillar composites (mfcs and nfcs) from polymer blends. Woodhead Publishing, 2017, 372 pGoogle Scholar
  2. 2.
    Bhattacharyya D, Fakirov S. Synthetic polymer-polymer composites. Hanser Publishers, Munich, 2012, 797 pGoogle Scholar
  3. 3.
    Zhang X, Geven MA, Grijpma DW, Gautrot JE, Peijs T (2016) Polymer-polymer composites for the design of strong and toughdegradable biomaterials. Mater Today Commun 8:53–63CrossRefGoogle Scholar
  4. 4.
    Jurczuk K, Galeski A, Piorkowska E (2013) All-polymer nanocomposites with nanofibrillar inclusions generated in situ during compounding. Polymer 54(17):4617–4628CrossRefGoogle Scholar
  5. 5.
    Utraсki LA, Wilkie CA (2014) Polymer blends handbook. London: Springer New York Heidelberg Dordrecht, 2373 рGoogle Scholar
  6. 6.
    Muralisrinivasan NS (2017) Polymer blends and composites: chemistry and technology. John Wiley & Sons, 352 pGoogle Scholar
  7. 7.
    Li W, Schlarb AK, Evstatiev M (2009) Study of PET/PP/TiO2 microfibrillar-structured composites: part 1. Preparation, morphology and dynamic mechanical analysis of fibrillized blends. J Appl Polym Sci 113:1471–1479CrossRefGoogle Scholar
  8. 8.
    Bartczak Z, Galeski A, Kowalczuk M, Sobota M, Malinowski R (2013) Tough blends of poly(lactide) and amorphous poly([R, S]-3-hydroxy butyrate)–morphology and properties. Eur Polym J 49(11):3630–3641CrossRefGoogle Scholar
  9. 9.
    Xie L, Xu H, Niu B, Ji X, Chen J, Li ZM, Hsiao BS, Zhong GJ (2014) Unprecedented access to strong and ductile poly(lactic acid) by introducing in situ nanofibrillar poly(butylenes succinate) for green packaging. Biomacromolecules 15:4054–4064CrossRefGoogle Scholar
  10. 10.
    Yu V, Morawiec J, Galeski A (2016) Ductility of polylactide composites reinforced with poly(butylenes succinate) nanofibers. Compos Part A 90:218–224CrossRefGoogle Scholar
  11. 11.
    Sangroniz L, Palacios JK, Fernandez M, Eguiazabal JI, Santamaria A, Muller AJ (2016) Linear on non-linear rheological behavior of polypropylene/polyamide blends modified with a compatibilizer agent and nanosolica and its relationship with the morphology. Eur Polym J 83:10–21CrossRefGoogle Scholar
  12. 12.
    Pan Z, Zhu M, Chen Y, Chen L, Wu W, Yu C, Xu Z, Cheng L (2010) The variation of fibrils’ number in the sea-island fiber – low density polyethylene/polyamide 6. Fibers Polym 11(3):494–499CrossRefGoogle Scholar
  13. 13.
    Huang Y, He Y, Ding W, Kunxiao Y, Yu D, Xin C (2017) Improved viscoelastic, thermal and mechanical properties of in situ microfibrillar polypropylene/polyamide 6,6 composites via direct extrusion using a triple-screw extruder. RSC Adv 7:5030–5038CrossRefGoogle Scholar
  14. 14.
    Jurczuk K, Galeski A, Morawiec J (2017) Effect of poly(tetrafluoroethylene) nanofibers on foaming behavior of linear and branched polypropylenes. Eur Polym J 88(1):171–182CrossRefGoogle Scholar
  15. 15.
    Kuzmanovic M, Delva L, Cardon L, Ragaert K (2016) The effect of injection molding temperature on the morphology and mechanical properties of PP/PET blends and microfibrillar composites. Polymers 8:355CrossRefGoogle Scholar
  16. 16.
    Kuzmanovic M, Delva L, Mi D, Martins CI, Cardon L, Ragaert K (2018) Development of crystalline morphology and its relationship with mechanical properties of PP/PET microfibrillar composites containing POE and POE-g-MA. Polymers 10:291CrossRefGoogle Scholar
  17. 17.
    Rezanova NM, Plavan VP, Rezanova VG, Bohatyryov VM (2016) Regularities of producing of nano-filled polyropylene microfibers. Vlakna Textil 4:3–8Google Scholar
  18. 18.
    Rezanova NM, Rezanova VG, Plavan VP, Viltsaniuk OO (2017) The influence of nano-additives on the formation of matrix-fibrillar structure in the polymer mixture melts and on the properties of complex threads. Vlakna Textil 2:37–42Google Scholar
  19. 19.
    Tsebrenko MV, Rezanova VG, Tsebrenko IA (2010) Polypropylene microfibers with filler in nano state. Chem Chem Technol 4(3):253–260Google Scholar
  20. 20.
    Doan VA, Masayuki Y (2013) Interphase transfer of nanofillers and functional liquid between immiscible polymer pairs. Rec Res Devel Mat Sci 10:59–88Google Scholar
  21. 21.
    Shields RJ, Bhattacharyya D, Fakirov S (2008) Fibrillar polymer-polymer composites: morphology, properties and application. J Mater Sci 43:6758–6770CrossRefGoogle Scholar
  22. 22.
    Tran NHA, Brünig H, Landwehr MA, Vogel R, Heinrich G (2016) Controlling micro- and nanofibrillar morphology of polymer blends in low-speed melt spinning process. Part II: influences of extrusion rate on morphological changes of PLA/PVA through a capillary die. J Appl Polym Sci 133:442–573Google Scholar
  23. 23.
    Tran NHA, Brünig H, Boldt R, Heinrich G (2014) Morphology development from rod-like to nanofibrillar structures of dispersed poly (lactic acid) phase in a binary blend with poly (vinyl alcohol) matrix along the spinline. Polymer 55(24):6354–6363CrossRefGoogle Scholar
  24. 24.
    Dickenson Ch. Filters and filtration. Elsevier Advanced Technology, Oxford, 1992, 780 pGoogle Scholar
  25. 25.
    Comprehensive material processing /Ed. M.S.J.Hashmi /Vol.10 – Advances in additive manufacturing and tooling, Elsevier, Ltd., 2014, 5474 pGoogle Scholar
  26. 26.
    Spoerk M, Arbeiter F, Cajner H, Sapkota J, Holzer C (2017) Parametric optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid). J Appl Polym Sci 134:45401CrossRefGoogle Scholar
  27. 27.
    Spoerk M, Sapkota J, Weingrill G, Fischinger T, Arbeiter F, Shrinkage HC (2017) Warpage optimization of expanded-perlite-filled polypropylene composites in extrusion-based additive manufacturing. Macromol Mater Eng 302:1700143CrossRefGoogle Scholar
  28. 28.
    Spoerk M, Arbeiter F, Raguž I, Weingrill G, Fischinger T, Traxler G, Schuschnigg S, Cardon L, Holzer C (2018) Polypropylene filled with glass spheres in extrusion-based additive manufacturing: effect of filler size and printing chamber temperature. Macromol Mater Eng 303:1800179CrossRefGoogle Scholar
  29. 29.
    Spoerk M, Gonzalez-Gutierrez J, Lichal C, Cajner H, Berger GR, Schuschnigg S, Cardon L, Holzer C (2018) Optimisation of the adhesion of polypropylene-based materials during extrusion-based additive manufacturing. Polymers 10:490CrossRefGoogle Scholar
  30. 30.
    Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776CrossRefGoogle Scholar
  31. 31.
    Spoerka M, Savandaiah C, Arbeiter F, Traxler G, Cardon L, Holzer C, Sapkota J (2018) Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing. Composites Part A 113:95–104CrossRefGoogle Scholar
  32. 32.
    Tsebrenko MV (1983) Fibrillation of the mixtures of crystallizable, amorphous and poorly crystalline polymers. Intern J Polym Mater 10:103–119CrossRefGoogle Scholar
  33. 33.
    Tsebrenko MV, Yudin AV, Ablasova TI, Vinogradov GV (1976) Mechanism of fibrillation in the flow of molten polymer mixtures. Polymer 17:831–834CrossRefGoogle Scholar
  34. 34.
    Han CD. Multiphase in polymer processing. New York: Academic Press, 1981. 459 pGoogle Scholar
  35. 35.
    Utracki L, Bakerdjiane Z, Kamal M. A method for the measurement of the true die swell of polymer melts. J Appl Polym Sci 1975;19(2):481–501Google Scholar
  36. 36.
    La Mantia FP, Valenza A, Paci M, Magagnini PL (1990) Rheology-morphology relationships in nylon 6/liquid-crystalline polymer blends. Polym Eng Sci 1(30):7–12CrossRefGoogle Scholar
  37. 37.
    Polymer Blends /Ed. by Paul D.R., Bucknall C.B. – New York: John Wiley & Sons, Inc. – 2000, V.1. – 618 pGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • V. A. Beloshenko
    • 1
  • V. P. Plavan
    • 2
  • N. M. Rezanova
    • 2
  • B. M. Savchenko
    • 2
  • I. Vozniak
    • 3
    Email author
  1. 1.Donetsk Institute for Physics and Engineering named after A.A. GalkinNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Kyiv National University of Technologies and DesignKyivUkraine
  3. 3.Centre of Molecular and Macromolecular StudiesPolish Academy of SciencesLodzPoland

Personalised recommendations