Advertisement

Novel study on keyhole less friction stir spot welding of Al 2024 reinforced with alumina nanopowder

  • M. Enami
  • M. FarahaniEmail author
  • M. Farhang
ORIGINAL ARTICLE
  • 28 Downloads

Abstract

The primary disadvantage of friction stir spot welding is the keyhole reminds after the welding process which removing of this keyhole is considered in this study. In addition, alumina nanopowder is incorporated into the weld stir zone as a technique to increase the joint strength. Flat friction stir spot welds with and without alumina nanopowder are examined, and the influences of the main process parameters on the joint strength and weld microstructure were investigated. It was found that the most effective parameters on the joint strength were the normal plunge depth, dwell time, and tool rotational speed, respectively. Tool rotational speed of 1120 rpm, 5 s dwell time, and normal plunge depth of 2.75 were found as the optimum process parameters. In this case, the strength of the friction stir spot weld increased 23% due to adding alumina nanopowder. The hardness of the stir zone was also increased, somewhat.

Keywords

Friction stir spot weld Keyhole Aluminum 2024-T3 Nanopowder Joint strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zargar S, Farahani M, Besharati MK (2016) Numerical and experimental investigation on the effects of submerged arc welding sequence on the residual distortion of the fillet welded plates. Proc Inst Mech Eng B J Eng Manuf 230(4):654–661.  https://doi.org/10.1177/0954405414560038 CrossRefGoogle Scholar
  2. 2.
    Farahani M, Sattari-Far I, Akbari D, Alderliesten R (2013) Effect of residual stresses on crack behavior in single edge bending specimens. Fatigue Fract Eng Mater Struct 36:115–126.  https://doi.org/10.1111/j.1460-2695.2012.01704.x CrossRefGoogle Scholar
  3. 3.
    Hajideh MR, Farahani M, Ramezani NM (2018) Reinforced dissimilar friction stir weld of polypropylene to acrylonitrile butadiene styrene with copper nanopowder. J Manuf Process 32:445–454.  https://doi.org/10.1016/j.jmapro.2018.03.010 CrossRefGoogle Scholar
  4. 4.
    Mahoney MW (2007) Friction stir welding and processing. Mater Sci Eng R Reports 50:360–366Google Scholar
  5. 5.
    Hoseini HT, Farahani M, Sohrabian M (2017) Process analysis of resistance spot welding on the Inconel alloy 625 using artificial neural networks. Int J Manuf Res 12(4):444–460.  https://doi.org/10.1504/IJMR.2017.088398 CrossRefGoogle Scholar
  6. 6.
    Sakano R (2001) Development of spot FSW Robo system for automobile body members. Proc 3rd Int Conf Friction Stir Welding, Japan, TWIGoogle Scholar
  7. 7.
    Chen Y (2015) Refill friction stir spot welding of dissimilar alloys, Master’s thesis, University of WaterlooGoogle Scholar
  8. 8.
    Lakshminarayanan AK, Annamalai VE, Elangovan K (2015) Identification of optimum friction stir spot welding process parameters controlling the properties of low carbon automotive steel joints. J Mater Res Technol 4:262–272.  https://doi.org/10.1016/j.jmrt.2015.01.001 CrossRefGoogle Scholar
  9. 9.
    Mohammadzadeh H, Farahani M, Besharati Givi M, Aghaei Vafaei M (2016) Study on the effects of friction stir welding process parameters on the microstructure and mechanical properties of 5086-H34 aluminum welded joints. Int J Adv Manuf Technol 83(1):611–621.  https://doi.org/10.1007/s00170-015-7581-5 CrossRefGoogle Scholar
  10. 10.
    Jambhale S, Kumar S, Kumar S (2015) Effect of process parameters & tool geometries on properties of friction stir spot welds : a review. Univ J Eng Sci 3:6–11.  https://doi.org/10.13189/ujes.2015.030102 CrossRefGoogle Scholar
  11. 11.
    Farahani M, Sattari-Far I, Akbari D, Alderliesten R (2012) Numerical and experimental investigations of effects of residual stresses on crack behavior in Aluminum 6082-T6. Proc Inst Mech Eng B J Eng Manuf 226:2178–2191.  https://doi.org/10.1177/0954406211432667 CrossRefGoogle Scholar
  12. 12.
    Nguyen N-T, Kim D-Y, Kim HY (2011) Assessment of the failure load for an AA6061-T6 friction stir spot welding joint. Proc Inst Mech Eng Part B J Eng Manuf 225:1746–1756.  https://doi.org/10.1177/0954405411405911 CrossRefGoogle Scholar
  13. 13.
    Enami M, Farahani M, Sohrabian M (2016) Evaluation of mechanical properties of resistance spot welding and friction stir spot welding on Aluminium alloys, Int Conf res Sci Eng, Istanbul, TurkeyGoogle Scholar
  14. 14.
    Kemal Kulekci M, Esme U, Onur E (2011) Experimental comparison of resistance spot welding and friction-stir spot welding processes for the en aw 5005 aluminum alloy. Mater Tech 45:395–399Google Scholar
  15. 15.
    Prangnell P, Philip B, Dimitrios B (2010) Novel approaches to friction spot welding thin aluminium automotive sheet. Mat Sci Foru 63:1237–1244CrossRefGoogle Scholar
  16. 16.
    Pan T, Joaquin A, Wilkosz DE (2005) Spot friction welding for sheet aluminum joining. 5th Int Frict Stir Weld Symp. 14–16Google Scholar
  17. 17.
    Gibson BT, Lammlein DH, Prater TJ (2014) Friction stir welding: process, automation, and control. J Manuf Process 16:56–73.  https://doi.org/10.1016/j.jmapro.2013.04.002 CrossRefGoogle Scholar
  18. 18.
    Sun YF, Fujii H, Takaki N, Okitsu Y (2012) Microstructure and mechanical properties of mild steel joints prepared by a flat friction stir spot welding technique. Mater Des 37:384–392.  https://doi.org/10.1016/j.matdes.2012.01.027 CrossRefGoogle Scholar
  19. 19.
    Sun YF, Fujii H, Takaki N, Okitsu Y (2011) Novel spot friction stir welding of 6061 and 5052 Al alloys. Sci Technol Weld Join 16:605–612.  https://doi.org/10.1179/1362171811Y.0000000043 CrossRefGoogle Scholar
  20. 20.
    Sun YF, Fujii H, Takaki N, Okitsu Y (2013) Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Mater Des 47:350–357.  https://doi.org/10.1016/j.matdes.2012.12.007 CrossRefGoogle Scholar
  21. 21.
    Andalib H, Farahani M, Enami M (2017) Study on the new friction stir spot weld joint reinforcement technique on 5754 aluminum alloy. Proc Inst Mech Eng Part C J Mech Eng Sci 95440621772941:2976–2986.  https://doi.org/10.1177/0954406217729419 CrossRefGoogle Scholar
  22. 22.
    Uematsu Y, Tokaji K, Tozaki Y, Kurita T, Murata S (2008) Effect of re-filling probe hole on tensile failure and fatigue behaviour of friction stir spot welded joints in Al–Mg–Si alloy. Int J Fatig 30:1956–1966CrossRefGoogle Scholar
  23. 23.
    Bilici MK, Yükler AI (2012) Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets. Mater Des 33:145–152CrossRefGoogle Scholar
  24. 24.
    Badarinarayan H, Shi Y, Li X, Okamoto K (2009) Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int J Mach Tools Manuf 49:814–823CrossRefGoogle Scholar
  25. 25.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater. Sci. Eng. R Reports 50:1–78Google Scholar
  26. 26.
    Rezaee Hajideh M, Farahani M, Alavia SAD, Molla Ramezani N (2017) Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets. J Manuf Process 26:269–279.  https://doi.org/10.1016/j.jmapro.2017.02.018 CrossRefGoogle Scholar
  27. 27.
    Badarinarayan H, Yang Q, Zhu S (2009) Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy. Int J Mach Tools Manuf 49:142–148CrossRefGoogle Scholar
  28. 28.
    Tozaki Y, Uematsu Y, Tokaji K (2010) A newly developed tool without probe for friction stir spot welding and its performance. J Mater Process Technol 210:844–851CrossRefGoogle Scholar
  29. 29.
    Karthikeyan R, Balasubramanian V (2010) Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM. Int J Adv Manuf Technol 51:173–183CrossRefGoogle Scholar
  30. 30.
    Arul SG, Miller SF, Kruger GH (2008) Experimental study of joint performance in spot friction welding of 6111-T4 aluminium alloy. Sci Technol Weld Join 13:629–637CrossRefGoogle Scholar
  31. 31.
    Bakavos D, Chen Y, Babout L, Prangnell P (2011) Material interactions in a novel pinless tool approach to friction stir spot welding thin aluminum sheet. Metall Mater Trans A Phys Metall Mater Sci 42:1266–1282CrossRefGoogle Scholar
  32. 32.
    Tozaki Y, Uematsu Y, Tokaji K (2007) Effect of processing parameters on static strength of dissimilar friction stir spot welds between different aluminium alloys. Fatigue Fract Eng Mater Struct 30:143–148.  https://doi.org/10.1111/j.1460-2695.2006.01096.x CrossRefGoogle Scholar
  33. 33.
    Shen Z, Yang X, Zhang Z (2013) Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Mater Des 44:476–486CrossRefGoogle Scholar
  34. 34.
    Tabasi M, Farahani M, Besharati GMK (2016) Dissimilar friction stir welding of 7075 aluminum alloy to AZ31 magnesium alloy using SiC nanoparticles. Int J Adv Manuf Technol 86(1–4):705–715.  https://doi.org/10.1007/s00170-015-8211-y CrossRefGoogle Scholar
  35. 35.
    Dolatkhah A, Golbabaei P, Besharati M, Molaiekiya F (2012) Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater Des 37:458–464.  https://doi.org/10.1016/J.MATDES.2011.09.035 CrossRefGoogle Scholar
  36. 36.
    Azizieh M, Kokabi A, Abachi P (2011) Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater Des 32:2034–2041.  https://doi.org/10.1016/J.MATDES.2010.11.055 CrossRefGoogle Scholar
  37. 37.
    Ramesh Babua S, Pavithranb S, Nithinb M, Parameshwaran B (2014) Effect of tool shoulder diameter during friction stir processing of AZ31B alloy sheets of various thicknesses. Procedia Eng 97:800–809.  https://doi.org/10.1016/J.PROENG.2014.12.354 CrossRefGoogle Scholar
  38. 38.
    Mathers G (2002) The welding of aluminium and its alloys. Woodhead publishingGoogle Scholar
  39. 39.
    Addison AC, Robelou AJ (2004) Friction stir spot welding: principal parameters and their effects.Proce5th Int Friction Stir Weld Symp, TWIGoogle Scholar
  40. 40.
    El-Morsy AW, Ghanem M, Bahaitham H (2018) Effect of friction stir welding parameters on the microstructure and mechanical properties of AA2024-T4 aluminum alloy. Eng Tech App Sci Res 8:2493–2498Google Scholar
  41. 41.
    Zheng-Ming S, Qi-Hong Q, Pai-Chen L (2016) Design of friction stir spot welding tools by using a novel thermal-mechanical approach. Materials 9:677–685CrossRefGoogle Scholar
  42. 42.
    Buffa G, Fratini L, Piacentini M (2008) On the influence of tool path in friction stir spot welding of aluminum alloys. J Mater Process Technol 208:309–317CrossRefGoogle Scholar
  43. 43.
    Chen YC, Feng JC, Liu HJ (2009) Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys. Mater Charact 60:476–481CrossRefGoogle Scholar
  44. 44.
    Liu HJ, Zhang HJ, Yu L (2011) Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy. Mater Des 32:1548–1553CrossRefGoogle Scholar
  45. 45.
    Lim YK (2014) Microstructure and mechanical properties of dissimiliar aluminum alloy/stainless steel joints prepared by friction stir spot welding (FSSW). PhD diss., Universiti Tun Hussein Onn MalaysiaGoogle Scholar
  46. 46.
    Reimann M, Goebel J, dos Santos JF (2017) Microstructure and mechanical properties of keyhole repair welds in AA 7075-T651 using refill friction stir spot welding. Mater Des 132:283–294CrossRefGoogle Scholar
  47. 47.
    Jata K, Sankaran K, Ruschau J (2000) Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451. Metal mater trans A 31:2181–2192CrossRefGoogle Scholar
  48. 48.
    Pouget G, Reynolds A (2008) Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds. Int J Fatig. 30:463–472CrossRefGoogle Scholar
  49. 49.
    Lin CW, Hung FY, Lui T-S, Chen LH (2015) Weibull statistics of tensile-shear strength of 5083 aluminum alloy after friction stir spot welding. Mater Trans 56:54–60CrossRefGoogle Scholar
  50. 50.
    Pan T-Y (2007) Friction stir spot welding (FSSW)—a literature review. SAE 01:1702–1105Google Scholar
  51. 51.
    Cox CD, Gibson BT, Strauss AM, Cook GE (2012) Effect of pin length and rotation rate on the tensile strength of a friction stir spot-welded al alloy: a contribution to automated production. Mater Manuf Process 27:472–478CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations