Deciphering the deformation mechanism in single point incremental forming: experimental and numerical investigation

  • K. U. YazarEmail author
  • Sumeet Mishra
  • K. Narasimhan
  • P. P. Date


In the present work, deformation mechanism in single-point incremental forming (SPIF) of drawing quality steel with a fully ferritic microstructure was studied. The effect of tool diameter and vertical step size on the micromechanisms of plastic deformation in SPIF was investigated by observing changes in microstructure and lattice rotation. It was observed that the fraction of grains with {111} ‖ normal direction (ND), which constitutes the gamma fiber in BCC materials, decreased with decrease in tool diameter and vertical step size. It is known that the state of deformation in SPIF is near to plane strain with the direction of major strain being always perpendicular to tool travel direction and negligible strain parallel to tool movement direction. Microstructural evidence for this observation and also for the presence of through thickness shear (TTS) components at smaller step size and tool diameter was observed. Viscoplastic self-consistent (VPSC) simulations revealed that the activity of \( \left\{112\right\}<11\overline{1}> \) slip system decreased in comparison to \( \left\{110\right\}<1\overline{1}1> \) slip system in the presence of TTS which manifested as the deviation from {111} ‖ ND position at smaller step size and tool diameter.


Single point incremental forming Gamma fiber Plane strain Through thickness shear VPSC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are extremely grateful to Prof. I. Samajdar for providing access to EBSD facility at the National facility for OIM at IIT Bombay. Authors are also thankful to Prof. Satyam Suwas, Dept. of Materials Engineering, Indian Institute of Science Bangalore, for his invaluable suggestions.


  1. 1.
    Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann 54:88–114. CrossRefGoogle Scholar
  2. 2.
    Emmens WC, Sebastiani G, van den Boogaard AH (2010) The technology of incremental sheet forming—a brief review of the history. J Mater Process Technol 210:981–997. CrossRefGoogle Scholar
  3. 3.
    Reddy NV, Cao J (2008) Incremental sheet metal forming: a review. Indo-US Work. Smart Mach, ToolsGoogle Scholar
  4. 4.
    Allwood JM, Shouler DR, Tekkaya AE (2007) The increased forming limits of incremental sheet forming processes. Key Eng Mater 344:621–628. CrossRefGoogle Scholar
  5. 5.
    Emmens WC, van den Boogaard AH (2009) An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol 209:3688–3695. CrossRefGoogle Scholar
  6. 6.
    Centeno G, Bagudanch I, Martínez-Donaire AJ, García-Romeu ML, Vallellano C (2014) Critical analysis of necking and fracture limit strains and forming forces in single-point incremental forming. Mater Des 63:20–29. CrossRefGoogle Scholar
  7. 7.
    Jackson K, Allwood J (2009) The mechanics of incremental sheet forming. J Mater Process Technol 209:1158–1174. CrossRefGoogle Scholar
  8. 8.
    Martins PAF, Bay N, Skjoedt M, Silva MB (2008) Theory of single point incremental forming. CIRP Ann - Manuf Technol 57:247–252. CrossRefGoogle Scholar
  9. 9.
    Neto DM, Martins JMP, Oliveira MC, Menezes LF, Alves JL (2016) Evaluation of strain and stress states in the single point incremental forming process. Int J Adv Manuf Technol 85:521–534. CrossRefGoogle Scholar
  10. 10.
    Mirnia MJ, Shamsari M (2017) Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. J Mater Process Technol 244:17–43. CrossRefGoogle Scholar
  11. 11.
    Mirnia MJ, Vahdani M, Shamsari M (2018) Ductile damage and deformation mechanics in multistage single point incremental forming. Int J Mech Sci 136:396–412. CrossRefGoogle Scholar
  12. 12.
    Eyckens P, Moreau JDL, Duflou JR, van Bael A, van Houtte P (2009) MK modelling of sheet formability in the incremental sheet forming process, taking into account through-thickness shear. Int J Mater Form 2:379–382. CrossRefGoogle Scholar
  13. 13.
    Eyckens P, Van Bael A, Van Houtte P (2009) Marciniak-Kuczynski type modelling of the effect of through-thickness shear on the forming limits of sheet metal. Int J Plast 25:2249–2268. CrossRefGoogle Scholar
  14. 14.
    Xu D, Malhotra R, Chen J, Lu B, Cao J (2013) Numerical and experimental studies for the effects of through-the-thickness shear on formability in single point incremental forming. AIP Conf Proc 1532:969–976. CrossRefGoogle Scholar
  15. 15.
    Esmaeilpour R, Kim H, Park T, Pourboghrat F, Mohammed B (2017) Comparison of 3D yield functions for finite element simulation of single point incremental forming (SPIF) of aluminum 7075. Int J Mech Sci 133:544–554. CrossRefGoogle Scholar
  16. 16.
    Esmaeilpour R, Kim H, Park T, Pourboghrat F, Xu Z, Mohammed B, Abu-Farha F (2018) Calibration of Barlat Yld2004-18P yield function using CPFEM and 3D RVE for the simulation of single point incremental forming (SPIF) of 7075-O aluminum sheet. Int J Mech Sci 145:24–41. CrossRefGoogle Scholar
  17. 17.
    Maqbool F, Bambach M (2018) Dominant deformation mechanisms in single point incremental forming (SPIF) and their effect on geometrical accuracy. Int J Mech Sci 136:279–292. CrossRefGoogle Scholar
  18. 18.
    Barnwal VK, Chakrabarty S, Tewari A, Narasimhan K, Mishra SK (2017) Forming behavior and microstructural evolution during single point incremental forming process of AA-6061 aluminum alloy sheet. Int J Adv Manuf Technol 95:921–935. CrossRefGoogle Scholar
  19. 19.
    Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming: state of the art and future trends. J Mater Process Technol 191:390–395. CrossRefGoogle Scholar
  20. 20.
    K.U. Yazar, P.. Date, K. Narasimhan, Experimental studies on single point incremental forming of metallic sheets, in: IDDRG 2014, Paris, Fr., 2014: pp. 281–286Google Scholar
  21. 21.
    Hagan E, Jeswiet J (2004) Analysis of surface roughness for parts formed by computer numerical controlled incremental forming. Proc Inst Mech Eng Part B J Eng Manuf 218:1307–1312. CrossRefGoogle Scholar
  22. 22.
    McAnulty T, Jeswiet J, Doolan M (2017) Formability in single point incremental forming: a comparative analysis of the state of the art. CIRP J Manuf Sci Technol 16:43–54. CrossRefGoogle Scholar
  23. 23.
    Ham M, Jeswiet J (2006) Single point incremental forming and the forming criteria for AA3003. CIRP Ann 55:241–244. CrossRefGoogle Scholar
  24. 24.
    Hussain G, Gao L, Zhang ZY (2008) Formability evaluation of a pure titanium sheet in the cold incremental forming process. Int J Adv Manuf Technol 37:920–926. CrossRefGoogle Scholar
  25. 25.
    Marques TA, Silva MB, Martins PAF (2012) On the potential of single point incremental forming of sheet polymer parts. Int J Adv Manuf Technol 60:75–86. CrossRefGoogle Scholar
  26. 26.
    Strano M (2005) Technological representation of forming limits for negative incremental forming of thin aluminum sheets. J Manuf Process 7:122–129. CrossRefGoogle Scholar
  27. 27.
    Golabi S, Khazaali H (2014) Determining frustum depth of 304 stainless steel plates with various diameters and thicknesses by incremental forming. J Mech Sci Technol 28:3273–3278. CrossRefGoogle Scholar
  28. 28.
    Lücke K, Hölscher M (1991) Rolling and recrystallization textures of BCC steels. Textures Microstruct 14:585–596. CrossRefGoogle Scholar
  29. 29.
    Suwas S, Ray RK (2014) Satyam Suwas, Crystallographic texture of materials. doi:
  30. 30.
    Barnwal VK, Raghavan R, Tewari A, Narasimhan K, Mishra SK (2017) Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet. Mater Sci Eng A 679:56–65. CrossRefGoogle Scholar
  31. 31.
    Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41:2611–2624. CrossRefGoogle Scholar
  32. 32.
    L.A. National, Manual for Code Version 7c ( last updated : November 13 , 2009 ) C . N . Tomé and, (2009).Google Scholar
  33. 33.
    Raabe D (1995) Simulation of rolling texture of b.c.c. metals considering grain interaction and crystaloraphic slip on {100}, {112} and {123} planes. Mater Sci Eng A 197:31–37. CrossRefGoogle Scholar
  34. 34.
    Wagner F, Canova G, Van Houtte P, Molinari A (1991) Comparison of simulated and experimental deformation textures for BCC metals. Textures Microstruct 14:1135–1140. CrossRefGoogle Scholar
  35. 35.
    Van Bael A, Eyckens P, He S, Bouffioux C, Henrard C, Habraken AM, Duflou J, Van Houtte P (2007) Forming limit predictions for single-point incremental sheet metal forming. AIP Conf Proc 907:309–314. CrossRefGoogle Scholar
  36. 36.
    Raphanel JL, Van Houtte P (1985) Simulation of the rolling textures of b.c.c. metals by means of the relaxed Taylor theory. Acta Metall 33:1481–1488. CrossRefGoogle Scholar
  37. 37.
    Eyckens P (2010) Formability in incremental sheet forming: generalization of the Marciniak-Kuczynksi modelGoogle Scholar
  38. 38.
    Leffers T (2011) The brass-type texture—how close are we to understand it? Mater Sci Forum 702–703:216–223. CrossRefGoogle Scholar
  39. 39.
    Suwas S, Gurao NP (2008) Crystallographic texture in materials. J Indian Inst Sci 88:151–177. Google Scholar
  40. 40.
    Lapeire L, Sidor J, Verleysen P, Verbeken K, De Graeve I, Terryn H, Kestens LAI (2015) Texture comparison between room temperature rolled and cryogenically rolled pure copper. Acta Mater 95:224–235. CrossRefGoogle Scholar
  41. 41.
    Asbeck HO, Mecking H (1978) Influence of friction and geometry of deformation on texture inhomogeneities during rolling of Cu single crystals as an example. Mater Sci Eng 34:111–119. CrossRefGoogle Scholar
  42. 42.
    Truszkowski W, Krol J, Major B (1980) Inhomogeneity of rolling texture in fcc metals. Metall Trans A 11:749–758. CrossRefGoogle Scholar
  43. 43.
    Lee CS, Duggan BJ (1991) Simple theory for the development of inhomogeneous rolling textures. Metall Trans A, Phys Metall Mater Sci 22 A:2637–2643. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • K. U. Yazar
    • 1
    • 2
    Email author
  • Sumeet Mishra
    • 1
  • K. Narasimhan
    • 2
  • P. P. Date
    • 3
  1. 1.Department of Materials EngineeringIndian Institute of Science BangaloreBangaloreIndia
  2. 2.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia
  3. 3.Department of Mechanical EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations