Advertisement

Digital image approach to tool path generation for surface machining

  • Ke Xu
  • Yingguang Li
ORIGINAL ARTICLE
  • 24 Downloads

Abstract

Conventional tool path generation algorithms are usually dependent to the surface geometry and thus case-sensitive. A specific tool path planning method for regular parametric surfaces cannot directly handle a triangular mesh surface, and vice versa. Presented in this paper is a unified digital image representation of a surface, along with a general process of tool path generation and optimization directly based on such representation. Regarding different objectives and utilities, three typical digital images are introduced to represent a projectable surface. Each digital image induces a uniform discrete scalar/vector field indicating the surface geometric property, which can be further applied to the cutter contact curve generation, tool orientation determination, and the cutting simulation tasks. Preliminary examples give a sneak peek of the capability of the proposed method. It is observed that, instead of utilizing geometry-based algorithm, some global optimization task of the tool path is transformed into finding a proper convolutional kernel and its parameter for the image processing. Though more investigation is worth spending in the future, the proposed approach inaugurates a standard and effective way to facilitate the tool path generation and optimization task for surface machining.

Keywords

Digital image processing Tool path generation Surface machining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Grant no. 51805260) and the National Natural Science Foundation of China and China Aerospace Science and Technology Corporation (Grant No. U1537209).

References

  1. 1.
    Wang Y, Tang X (1999) Five-axis NC machining of sculptured surfaces. Int J Adv Manuf Technol 15(1):7–14CrossRefGoogle Scholar
  2. 2.
    Cho J, Kim J, Kim K (2000) CNC tool path planning for multi-patch sculptured surfaces. Int J Prod Res 38(7):1677–1687CrossRefGoogle Scholar
  3. 3.
    Au C (2001) A path interval generation algorithm in sculptured object machining. Int J Adv Manuf Technol 17(8):558–561CrossRefGoogle Scholar
  4. 4.
    Chen T, Ye P (2002) A tool path generation strategy for sculptured surfaces machining. J Mater Process Technol 127(3):369–373CrossRefGoogle Scholar
  5. 5.
    Ding S, Mannan M, Poo A, Yang D, Han Z (2003) Adaptive iso-planar tool path generation for machining of free-form surfaces. Comput Aided Des 35(2):141–153CrossRefGoogle Scholar
  6. 6.
    Han Z, Yang DCH (1999) Iso-phote based tool-path generation for machining free-form surfaces. J Manuf Sci Eng 121(4):656–664CrossRefGoogle Scholar
  7. 7.
    Koren Y, Lin R (1996) Efficient tool-path planning for machining free-form surfaces. ASME Trans J Eng Ind:20–28Google Scholar
  8. 8.
    Feng HY, Su N (2000) Integrated tool path and feed rate optimization for the finishing machining of 3D plane surfaces. Int J Mach Tools Manuf 40(11):1557–1572CrossRefGoogle Scholar
  9. 9.
    Tournier C, Duc E (2002) A surface based approach for constant scallop HeightTool-path generation. Int J Adv Manuf Technol 19(5):318–324CrossRefGoogle Scholar
  10. 10.
    Lo C (1999) Efficient cutter-path planning for five-axis surface machining with a flat-end cutter. Comput Aided Des 31(9):557–566CrossRefGoogle Scholar
  11. 11.
    Suresh K, Yang C (1994) Constant scallop-height machining of free-form surfaces. J Eng Ind(Transactions of the ASME)(USA) 116(2):253–259CrossRefGoogle Scholar
  12. 12.
    Yuwen S, Dongming G, Haixia W (2006) Iso-parametric tool path generation from triangular meshes for free-form surface machining. Int J Adv Manuf Technol 28(7–8):721–726CrossRefGoogle Scholar
  13. 13.
    Lee S-G, Kim H-C, Yang M-Y (2008) Mesh-based tool path generation for constant scallop-height machining. Int J Adv Manuf Technol 37(1–2):15–22CrossRefGoogle Scholar
  14. 14.
    Yang DC, Chuang J-J, OuLee T-H (2003) Boundary-conformed toolpath generation for trimmed free-form surfaces. Comput Aided Des 35(2):127–139CrossRefGoogle Scholar
  15. 15.
    Ren F, Sun Y, Guo D (2009) Combined reparameterization-based spiral toolpath generation for five-axis sculptured surface machining. Int J Adv Manuf Technol 40(7–8):760–768CrossRefGoogle Scholar
  16. 16.
    Chiou C-J, Lee Y-S (2002) A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Comput Aided Des 34(5):357–371CrossRefGoogle Scholar
  17. 17.
    Kim T, Sarma SE (2002) Toolpath generation along directions of maximum kinematic performance; a first cut at machine-optimal paths. Comput Aided Des 34(6):453–468CrossRefGoogle Scholar
  18. 18.
    Beudaert X, Pechard P-Y, Tournier C (2011) 5-Axis tool path smoothing based on drive constraints. Int J Mach Tools Manuf 51(12):958–965CrossRefGoogle Scholar
  19. 19.
    Lin Z, Fu J, Sun Y, Gao Q, Xu G, Wang Z (2017) Non-retraction toolpath generation for irregular compound freeform surfaces with the LKH TSP solver. Int J Adv Manuf Technol 7:1–15Google Scholar
  20. 20.
    Zou Q, Zhang J, Deng B, Zhao J (2014) Iso-level tool path planning for free-form surfaces. Comput Aided Des 53:117–125MathSciNetCrossRefGoogle Scholar
  21. 21.
    Xu K, Luo M, Tang K (2016) Machine based energy-saving tool path generation for five-axis end milling of freeform surfaces. J Clean Prod 139:1207–1223CrossRefGoogle Scholar
  22. 22.
    Hu P, Tang K (2016) Five-axis tool path generation based on machine-dependent potential field. Int J Comput Integr Manuf 29(6):636–651CrossRefGoogle Scholar
  23. 23.
    Xu K, Tang K (2014) Five-axis tool path and feed rate optimization based on the cutting force–area quotient potential field. Int J Adv Manuf Technol 75(9–12):1661–1679CrossRefGoogle Scholar
  24. 24.
    Hu P, Chen L, Tang K (2016) Efficiency-optimal iso-planar tool path generation for five-axis finishing machining of freeform surfaces. Comput Aided DesGoogle Scholar
  25. 25.
    Liu X, Li Y, Ma S, Lee C-h (2015) A tool path generation method for freeform surface machining by introducing the tensor property of machining strip width. Comput Aided Des 66:1–13CrossRefGoogle Scholar
  26. 26.
    Morishige K, Kase K, Takeuchi Y (1997) Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining. Int J Adv Manuf Technol 13(6):393–400CrossRefGoogle Scholar
  27. 27.
    Balasubramaniam M, Sarma SE, Marciniak K (2003) Collision-free finishing toolpaths from visibility data. Comput Aided Des 35(4):359–374CrossRefGoogle Scholar
  28. 28.
    Hsueh Y-W, Hsueh M-H, Lien H-C (2007) Automatic selection of cutter orientation for preventing the collision problem on a five-axis machining. Int J Adv Manuf Technol 32(1–2):66–77CrossRefGoogle Scholar
  29. 29.
    Lauwers B, Dejonghe P, Kruth J-P (2003) Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation. Comput Aided Des 35(5):421–432CrossRefGoogle Scholar
  30. 30.
    Lee Y-S (1997) Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining. Comput Aided Des 29(7):507–521CrossRefGoogle Scholar
  31. 31.
    Sun Y, Bao Y, Kang K, Guo D (2013) A cutter orientation modification method for five-axis ball-end machining with kinematic constraints. Int J Adv Manuf Technol 67(9–12):2863–2874CrossRefGoogle Scholar
  32. 32.
    Hu P, Tang K (2011) Improving the dynamics of five-axis machining through optimization of workpiece setup and tool orientations. Comput Aided Des 43(12):1693–1706CrossRefGoogle Scholar
  33. 33.
    Wang N, Tang K (2007) Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath. Comput Aided Des 39(10):841–852CrossRefGoogle Scholar
  34. 34.
    Affouard A, Duc E, Lartigue C, Langeron J-M, Bourdet P (2004) Avoiding 5-axis singularities using tool path deformation. Int J Mach Tools Manuf 44(4):415–425CrossRefGoogle Scholar
  35. 35.
    Ho M-C, Hwang Y-R, Hu C-H (2003) Five-axis tool orientation smoothing using quaternion interpolation algorithm. Int J Mach Tools Manuf 43(12):1259–1267CrossRefGoogle Scholar
  36. 36.
    Fard MJB, Bordatchev EV (2013) Experimental study of the effect of tool orientation in five-axis micro-milling of brass using ball-end mills. Int J Adv Manuf Technol 67(5–8):1079–1089CrossRefGoogle Scholar
  37. 37.
    Lim T-S, Lee C-M, Kim S-W, Lee D-W (2002) Evaluation of cutter orientations in 5-axis high speed milling of turbine blade. J Mater Process Technol 130:401–406CrossRefGoogle Scholar
  38. 38.
    Hadwiger M, Sigg C, Scharsach H, Bühler K, Gross M (2005) Real-time ray-casting and advanced shading of discrete isosurfaces. Comput Graph Forum 24(3):303–312 Wiley Online LibraryCrossRefGoogle Scholar
  39. 39.
    Mitchell JS, Mount DM, Papadimitriou CH (1987) The discrete geodesic problem. SIAM J Comput 16(4):647–668MathSciNetCrossRefGoogle Scholar
  40. 40.
    Surazhsky V, Surazhsky T, Kirsanov D, Gortler S J, and Hoppe H, "Fast exact and approximate geodesics on meshes," in ACM Trans Graph (TOG), 2005, vol. 24, no. 3, pp. 553–560: AcmGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations