Effects of forming parameters on microstructure and mechanical properties of a cup-shaped Mg–8.20Gd–4.48Y–3.34Zn–0.36Zr alloy sample manufactured by thixoforming

  • Zong-Yao Xie
  • Yan Tian
  • Qian Li
  • Jian-Cheng Zhou
  • Yi MengEmail author


Thixoforming experiments of a cup-shaped Mg–8.20Gd–4.48Y–3.34Zn–0.36Zr alloy sample were carried out on a hydraulic press at different temperatures under different forming loads. Metallographic analysis, Vickers hardness test, and tensile tests were conducted to investigate the microstructure and mechanical properties of the samples formed under different forming parameters. Samples without macro- and micro-defects formed successfully at 580 °C under different forming loads were attributed to the excellent formability of semisolid slurry with homogeneous globular microstructure. Because solid and liquid phases in the semisolid slurries exhibited different forming behaviors during thixoforming, liquid segregation occurred and resulted in the inhomogeneous microstructural distribution in thixoformed samples. Owing to the different crystal structures of α-Mg and (Mg, Zn)3RE eutectic compounds transformed from liquid phase, their volume fraction, morphologies, and distributions affected the mechanical properties of the thixoformed samples significantly. Neither formability of semisolid slurry nor the microstructure of thixoformed sample was affected significantly by the forming load. Higher values of Vickers hardness measured in the bottom regions of the sample formed under higher forming loads were attributed to the higher residual stress caused by the excess forming energy.


Thixoforming Mg-RE alloy Semisolid forming Mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This study was financially supported by National Natural Science Foundation of China (contract No. 51605055), Chongqing Natural Science Foundation (contract No. cstc2016jcyjA1027), Fundamental Research Funds for the Central Universities (contract No. 0903005203307), and Venture & Innovation Support Program for Chongqing Overseas Returnees.


  1. 1.
    Nie JF, Gao X, Zhu SM (2005) Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scr Mater 53:1049–1053CrossRefGoogle Scholar
  2. 2.
    Chen Q, Yuan B, Lin J, Xia X, Zhao Z, Shu D (2014) Comparisons of microstructure, thixoformability and mechanical properties of high performance wrought magnesium alloys reheated from the as-cast and extruded states. J Alloys Compd 584:63–75CrossRefGoogle Scholar
  3. 3.
    Chen G, Chen L, Zhao G, Zhang C, Cui W (2017) Microstructure analysis of an Al-Zn-Mg alloy during porthole die extrusion based on modeling of constitutive equation and dynamic recrystallization. J Alloys Compd 710:80–91CrossRefGoogle Scholar
  4. 4.
    Xia X, Chen Q, Zhao Z, Ma M, Li X, Zhang K (2015) Microstructure, texture and mechanical properties of coarse-grained Mg-Gd-Y-Nd-Zr alloy processed by multidirectional forging. J Alloys Compd 623:62–68CrossRefGoogle Scholar
  5. 5.
    Chen Q, Chen G, Han F, Xia X, Wu Y (2017) Microstructures, mechanical properties, and wear resistances of thixoextruded SiCp/WE43 magnesium matrix composites. Metall Mater Trans A 48:3497–3513CrossRefGoogle Scholar
  6. 6.
    Nagarajan D, Ren X, Cáceres CH (2017) Anelastic behavior of Mg-Al and Mg-Zn solid solutions. Mater Sci Eng A 696:387–392CrossRefGoogle Scholar
  7. 7.
    Du X, Du W, Wang Z, Liu K, Li S (2018) Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites. Mater Sci Eng A 711:633–642CrossRefGoogle Scholar
  8. 8.
    Gazizov M, Kaibyshev R (2017) Precipitation structure and strengthening mechanisms in an Al-Cu-Mg-Ag alloy. Mater Sci Eng A 702:29–40CrossRefGoogle Scholar
  9. 9.
    Xu C, Zheng MY, Chi YQ, Chen XJ, Wu K, Wang ED, Fan GH, Yang P, Wang GJ, Lv XY, Xu SW, Kamado S (2012) Microstructure and mechanical properties of the Mg–Gd–Y–Zn–Zr alloy fabricated by semi-continuous casting. Mater Sci Eng A 549:128–135CrossRefGoogle Scholar
  10. 10.
    Xu C, Zheng MY, Wu K, Wang ED, Fan GH, Xu SW, Kamado S, Liu XD, Wang GJ, Lv XY (2013) Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg–Gd–Y–Zn–Zr alloy. Mater Sci Eng A 559:364–370CrossRefGoogle Scholar
  11. 11.
    Xu C, Zheng MY, Wu K, Wang ED, Fan GH, Xu SW, Kamado S, Liu XD, Wang GJ, Lv XY (2013) Influence of rolling temperature on the microstructure and mechanical properties of Mg–Gd–Y–Zn–Zr alloy sheets. Mater Sci Eng A 559:615–622CrossRefGoogle Scholar
  12. 12.
    Xu C, Zheng M, Xu S, Wu K, Wang E, Fan G, Kamado S (2015) Improving strength and ductility of Mg–Gd–Y–Zn–Zr alloy simultaneously via extrusion, hot rolling and ageing. Mater Sci Eng A 643:137–141CrossRefGoogle Scholar
  13. 13.
    Xu C, Nakata T, Qiao XG, Jiang HS, Sun WT, Chi YC, Zheng MY, Kamado S (2017) Effect of extrusion parameters on microstructure and mechanical properties of Mg-7.5Gd-2.5Y-3.5Zn-0.9Ca-0.4Zr (wt%) alloy. Mater Sci Eng A 685:159–167CrossRefGoogle Scholar
  14. 14.
    Yu Z, Xu C, Meng J, Zhang X, Kamado S (2018) Microstructure evolution and mechanical properties of as-extruded Mg-Gd-Y-Zr alloy with Zn and Nd additions. Mater Sci Eng A 713:234–243CrossRefGoogle Scholar
  15. 15.
    Xu SW, Oh-ishi K, Kamado S, Uchida F, Homma T, Hono K (2011) High-strength extruded Mg–Al–Ca–Mn alloy. Scr Mater 65:269–272CrossRefGoogle Scholar
  16. 16.
    Chen L, Zhao G, Yu J, Zhang W (2015) Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process. Mater Des 66:129–136CrossRefGoogle Scholar
  17. 17.
    Chen G, Zhang S, Zhang H, Han F, Wang G, Chen Q, Zhao Z (2018) Controlling liquid segregation of semi-solid AZ80 magnesium alloy by back pressure thixoextruding. J Mater Process Technol 259:88–95CrossRefGoogle Scholar
  18. 18.
    Chen Q, Zhao Z, Chen G, Wang B (2015) Effect of accumulative plastic deformation on generation of spheroidal structure, thixoformability and mechanical properties of large-size AM60 magnesium alloy. J Alloys Compd 632:190–200CrossRefGoogle Scholar
  19. 19.
    Flemings MC (1991) Behavior of metal alloys in the semisolid state. Met Trans 22A:957–981CrossRefGoogle Scholar
  20. 20.
    Rogal Ł, Dutkiewicz J, Atkinson HV, Lityńska-Dobrzyńska L, Czeppe T, Modigell M (2013) Characterization of semi-solid processing of aluminium alloy 7075 with Sc and Zr additions. Mater Sci Eng A 580:362–373CrossRefGoogle Scholar
  21. 21.
    Jabbari A, Abrinia K (2018) A metal additive manufacturing method: semi-solid metal extrusion and deposition. Int J Adv Manuf Tech 94:3819–3828CrossRefGoogle Scholar
  22. 22.
    Kiuchi M, Kopp R (2002) Mushy/semi-solid metal forming technology—present and future. CIRP Ann–Manuf Technol 51:653–670CrossRefGoogle Scholar
  23. 23.
    Atkinson HV, Burke K, Vaneetveld G (2008) Recrystallisation in the semi-solid state in 7075 aluminium alloy. Mater Sci Eng A 409:266–276CrossRefGoogle Scholar
  24. 24.
    Han SH, Kang CG, Sung GH (2007) Investigation of viscosity properties for rheology forming of AM50A magnesium alloy. J Mater Process Technol 187-188:335–338CrossRefGoogle Scholar
  25. 25.
    Chen T, Wang L, Yang J, Lu S (2017) Thixoforming of AM50 magnesium alloy. Int J Adv Manuf Tech 90:1639–1647CrossRefGoogle Scholar
  26. 26.
    Xu Y, Jia J, Chen C, Liu W, Luo S, Yang Y, Hu L (2017) Thixoforming of semi-solid AZ91D alloy with high solid fraction prepared by the RUE-based SIMA process. Int J Adv Manuf Tech 93:4317–4328CrossRefGoogle Scholar
  27. 27.
    Liu D, Atkinson HV, Jones H (2005) Thermodynamic prediction of thixoformability in alloys based on the Al–Si–Cu and Al–Si–Cu–Mg systems. Acta Mater 53:3807–3819CrossRefGoogle Scholar
  28. 28.
    Young KP, Kyonka CP, Courtois JA (1983) Fine grained metal composition. US Patent 4,415,374Google Scholar
  29. 29.
    Kirkwood DH, Sellars CM, Eliasboyed LG (1991) Fine grained metal composition. US Patent 5,037,498Google Scholar
  30. 30.
    Chen Q, Chen G, Han L, Hu N, Han F, Zhao Z, Xia X, Wan Y (2016) Microstructure evolution of SiCp/ZM6 (Mg–Nd–Zn) magnesium matrix composite in the semi-solid state. J Alloys Compd 656:67–76CrossRefGoogle Scholar
  31. 31.
    Zhao Z, Chen Q, Wang Y, Shu D (2009) Microstructural evolution of an ECAE-formed ZK60-RE magnesium alloy in the semi-solid state. Mater Sci Eng A 506:8–15CrossRefGoogle Scholar
  32. 32.
    Chen Q, Xia X, Yuan B, Shu D, Zhao Z, Han J (2014) Hot workfability behavior of as-cast Mg–Zn–Y–Zr alloy. Mater Sci Eng A 593:38–47CrossRefGoogle Scholar
  33. 33.
    Meng Y, Chen Q, Sugiyama S, Yanagimoto J (2017) Effects of reheating and subsequent rapid cooling on microstructural evolution and semisolid forming behaviors of extruded Mg–8.20Gd–4.48Y–3.34Zn–0.36Zr alloy. J Mater Process Technol 247:192–203CrossRefGoogle Scholar
  34. 34.
    Meng Y, Zhou JC, Peng F, Liu J, Wu Y, Chen Q, Sugiyama S, Yanagimoto J (2017) Effects of backwards thixo-extrusion on the microstructure and mechanical properties of Mg-8.20Gd-4.48Y-3.34Zn-0.36Zr alloy. Procedia Eng 207:2137–2142CrossRefGoogle Scholar
  35. 35.
    Omar MZ, Palmiere EJ, Howe AA, Atkinson HV, Kapranos P (2005) Thixoforming of a high performance HP9/4/30 steel. Mater Sci Eng A 395:53–61CrossRefGoogle Scholar
  36. 36.
    Li J, Sugiyama S, Yanagimoto J (2005) Microstructural evolution and flow stress of semisolid type 304 stainless steel. J Mater Process Technol 161:396–406CrossRefGoogle Scholar
  37. 37.
    Meng Y, Zhang J, Yi Y, Zhou J, Sugiyama S, Yanagimoto J (2017) Study on the effects of forming conditions on microstructural evolution and forming behaviors of Cr-V-Mo tool steel during multi-stage thixoforging by physical simulation. J Mater Process Technol 248:275–285CrossRefGoogle Scholar
  38. 38.
    Li J, Sugiyama S, Yanagimoto J, Chen Y, Fan G (2008) Effect of inverse peritectic reaction on microstructural spheroidization in semi-solid state. J Mater Process Technol 208:165–170CrossRefGoogle Scholar
  39. 39.
    Meng Y, Fukushima S, Sugiyama S, Yanagimoto J (2015) Cold formability of AZ31 wrought magnesium alloy undergoing semisolid spheroidization treatment. Mater Sci Eng A 624:148–156CrossRefGoogle Scholar
  40. 40.
    Püttgen W, Hallstedt B, Bleck W, Löffler JF, Uggowitzer PJ (2007) On the microstructure and properties of 100Cr6 steel processed in the semisolid state. Acta Mater 55:6553–6560CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.The Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations