A comparative study on the effects of boundary constraints on electromagnetic sheet forming

  • Ning Liu
  • Zhipeng Lai
  • Quanliang Cao
  • Xiaotao Han
  • Yujie Huang
  • Xiaoxiang Li
  • Meng Chen
  • Liang LiEmail author


This paper investigates the effect of boundary constraints on the plastic deformation behavior of a ∅458 circular sheet metal in an electromagnetic forming process. Both experiments and simulations were conducted on a flat spiral coil system. In the experiments, two different boundary conditions were imposed on the workpiece flange by utilizing a blank holder with and without a draw bead to control the draw-in of the flange. Both the final profile and thickness distribution of the workpiece are sensitive to the boundary constraint, due to the varied draw-in material flow. Furthermore, according to the morphology characteristic of the deformation profile, three typical deformation stages can be recognized, where the thickness reduction at the sheet center only occurs in the first and third stages. This work provides a better understanding of the deformation behavior in the electromagnetic sheet-forming process under varied boundary constraints, which is fundamental for the further development of this process.


Electromagnetic sheet forming Constraint condition Deformation behavior Draw-in 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are sincerely grateful for support from the National Basic Research Program of China (973 Program): 2011CB012801 and the China Postdoctoral Science Foundation: 2018 M632856.


  1. 1.
    Miller WS, Zhuang L, Bottema J, Wittebrood AJ, Smet PD, Haszler A, Vieregge A (2000) Recent development in aluminum alloys for the automotive industry. Mater Sci Eng A 280(1):37–49CrossRefGoogle Scholar
  2. 2.
    Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M (2011) Electromagnetic forming-a review. J Mater Process Technol 211(5):787–829CrossRefGoogle Scholar
  3. 3.
    Balanethiram VS, Hu X, Altynova M, Daehn GS (1994) Hyperplasticity: enhanced formability at high rates. J Mater Process Technol 45(1):595–600CrossRefGoogle Scholar
  4. 4.
    Cui XH, Li JJ, Mo JH, Xiao SJ, Du EH, Zhao J (2011) Numerical simulation of electromagnetic sheet bulging based on FEM. Int J Adv Manuf Technol 57(1–4):127–134CrossRefGoogle Scholar
  5. 5.
    Noh HG, Song WJ, Kang BS, Kim J (2015) Two-step electromagnetic forming process using spiral forming coils to deform sheet metal in a middle-block die. Int J Adv Manuf Technol 76(9–12):1691–1703CrossRefGoogle Scholar
  6. 6.
    Yu HP, Li CF, Jiang HW, Zhao ZH, Deng JH, L ZL, Zhang XF (2008) Research on magnetic pulse sizing of aluminum tube. Int J Adv Manuf Technol 38(11–12):1165–1171CrossRefGoogle Scholar
  7. 7.
    Yu HP, Li CF (2009) Effects of current frequency on electromagnetic tube compression. J Mater Process Technol 209(2):1053–1059CrossRefGoogle Scholar
  8. 8.
    Takatsu N, Kato M, Sato K, Tobe T (1988) High-speed forming of metal sheets by electromagnetic force. JSME Int J 31(1):142–148Google Scholar
  9. 9.
    Kamal M, Daehn GS (2007) A uniform pressure electromagnetic actuator for forming flat sheets. J Manuf Sci Eng 129(2):369–379CrossRefGoogle Scholar
  10. 10.
    Golowin S, Kamal M, Shang J, Portier J, Din A, Daehn GS (2007) Application of a uniform pressure actuator for electromagnetic processing of sheet metal. Journal of Materials Engineering and Performance 16(4):455–460CrossRefGoogle Scholar
  11. 11.
    Kamal M, Shang J, Cheng V, Hatkevich S, Daehn GS (2007) Agile manufacturing of a micro-embossed case by a two-step electromagnetic forming process. J Mater Process Technol 190(1):41–50CrossRefGoogle Scholar
  12. 12.
    Yu HP, Tong YC (2017) Magnetic pulse welding of aluminum to steel using uniform pressure electromagnetic actuator. Int J Adv Manuf Technol 91(5–8):2257–2265CrossRefGoogle Scholar
  13. 13.
    Shang J, Daehn GS (2011) Electromagnetically assisted sheet metal stamping. J Mater Process Technol 211(5):868–874CrossRefGoogle Scholar
  14. 14.
    Imbert J, Worswick M (2012) Reduction of a pre-formed radius in aluminum sheet using electromagnetic and conventional forming. J Mater Process Technol 212:1963–1972CrossRefGoogle Scholar
  15. 15.
    Iriondo E, Gutiérrez MA, González B, Alcaraz JL, Daehn GS (2011) Electromagnetic impulse calibration of high strength sheet metal structures. J Mater Process Technol 211(5):909–915CrossRefGoogle Scholar
  16. 16.
    Daehn GS, Vivek A, Shang JH (2015) Electromagnetically assisted sheet metal stamping and deep drawing. Excellent Inventions in Metal Forming 60:107–112Google Scholar
  17. 17.
    Cui XH, Li JJ, Mo JH, Fang JX, Zhou B, Xiao XT (2016) Effect of the sheet thickness and current damping exponent on the optimum current frequency in electromagnetic forming. Int J Adv Manuf Technol 85(1–4):843–851CrossRefGoogle Scholar
  18. 18.
    Cao QL, Li L, Lai ZP, Zhou ZY, Xiong Q, Zhang X, Han XT (2014) Dynamic analysis of electromagnetic sheet metal forming process using finite element method. Int J Adv Manuf Technol 74(1–4):361–368CrossRefGoogle Scholar
  19. 19.
    Lai ZP, Cao QL, Zhang B, Han XT, Zhou ZY, Xiong Q, Zhang X, Chen Q, Li L (2015) Radial Lorentz force augmented deep drawing for large drawing ratio using a novel dual-coil electromagnetic forming system. J Mater Process Technol 222:13–20CrossRefGoogle Scholar
  20. 20.
    Lai ZP, Cao QL, Han XT, Huang YJ, Deng FX, Chen Q, Li L (2017) Investigation on plastic deformation behavior of sheet workpiece during radial Lorentz force augmented deep drawing process. J Mater Process Technol 245:193–206CrossRefGoogle Scholar
  21. 21.
    Cui XH, Li JJ, Mo JH, Fang JX, Zhou B, Xiao XT (2016) Incremental electromagnetic-assisted stamping (IEMAS) with radial magnetic pressure: a novel deep drawing method for forming aluminum alloy sheets. J Mater Process Technol 233:79–88CrossRefGoogle Scholar
  22. 22.
    Fang J, Mo J, Li J, Zhou B (2017) Feasibility of electromagnetic pulse-assisted incremental drawing with a radial magnetic force for AA-5052 aluminum alloy sheet. Int J Adv Manuf Technol 88(9–12):3123–3137CrossRefGoogle Scholar
  23. 23.
    Ma HJ, Huang L, Li JJ, Mo JH, Fang JX, Zhou B, Xiao XT (2016) Effects of process parameters on electromagnetic sheet free forming of aluminum alloy. Int J Adv Manuf Technol 96:359–369Google Scholar
  24. 24.
    Lai ZP, Cao QL, Han XT, Chen M, Li XX, Huang YJ, Chen Q, Li L (2018) Application of electromagnetic forming as a light-weight manufacturing method for large scale sheet metal parts. In: Proceedings of 8th International Conference on High Speed Forming, Columbus (OH), USA, May, 2018.Google Scholar
  25. 25.
    Mamalis AG, Manolakos DE, Kladas AG, Koumoutsos AK (2004) Electromagnetic forming and powder processing trends and developments. Appl Mech Rev 57(4):299–324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Ning Liu
    • 1
  • Zhipeng Lai
    • 1
  • Quanliang Cao
    • 1
  • Xiaotao Han
    • 1
  • Yujie Huang
    • 1
  • Xiaoxiang Li
    • 1
  • Meng Chen
    • 1
  • Liang Li
    • 1
    Email author
  1. 1.Wuhan National High Magnetic Field CenterHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations