Waterjet machining and research developments: a review

  • Xiaochu Liu
  • Zhongwei Liang
  • Guilin Wen
  • Xuefeng Yuan


Waterjet machining has attracted great attention in the conditions of hard-to-machine materials, microstructures, or complicated industrial components, and it has become well-established in all major areas of theoretical researches and already been found across the broad spectrum of technical application areas especially in the specific sectors of scientific frontiers, including the mechanical precision component, advanced functional material, intelligent automotive engineering, aerospace equipment, renewable energy science, leading medical instruments, etc. This paper reviews the historical and latest research developments and integrated applications of waterjet machining in the domains of mechanism and performances, which covers a lot of key aspects such as waterjet machining optimization, dynamic simulation and process monitoring of machining process, and the influence mechanism of waterjet machining as well. Its machining mechanism, performance capability, functional advantages, and inherent disadvantages are characterized and assessed in detail, so that the integrated applications of multifield-assisted waterjet machining can be introduced and focused thereafter. Finally, various future development prospects in all the abovementioned aspects of waterjet machining are discussed systematically and explored subsequently, which contribute to the acquirement of a series of comprehensive conclusions. This review can be used as suitable and effective tools to study and summarize the complicated correlations between waterjet machining mechanism and its actual working performances in different environmental conditions; therefore, this proposed investigation facilitates the precision manufacture or characteristic improvements of industrial product with higher efficiency and better quality in return.


Waterjet Machining Research Developments Review 



The helpful instruction from Prof. Kornel F. Ehmann and facility provision offered by the Advanced Manufacturing Processing Laboratory, Northwestern University, USA, deserve high appreciation. We also want to thank the editors for their hard work and the referees for their kind comments and valuable suggestions to improve this paper.

Funding information

The authors acknowledge the funding of the following science foundations: National Natural Science Foundation of China (51575116, U1601204), China National Spark Program (2015GA780065), The Science and Technology Innovative Research Team Program in Higher Educational Universities of Guangdong Province (2017KCXTD025), The Innovative Academic Team Project of Guangzhou Education System (1201610013), The Science and Technology Planning Project of Guangdong Province (2017A010102014, 2016A010102022), The Science and Technology Planning Project of Guangzhou Municipal Government (201707010293), The Water Resource Science and Technology Program of Guangdong Province of China (2012–11), Guangzhou University’s 2017 training program for young top-notch personnel (BJ201701), and The Postgraduate Education Innovation Program of Guangdong Province (2016SQXX14, 2016XSLT24).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Pang KL, Nguyen T, Fan JM, Wang J (2012) Modelling of the micro-channeling process on glasses using an abrasive slurry jet. Int J Mach Tools Manuf 53:118–126Google Scholar
  2. 2.
    Escobar-Palafox GA, Gault R, Ridgway K (2012) Characterisation of abrasive waterjet process for pocket milling in Inconel. Procedia CIRP 718:404–408CrossRefGoogle Scholar
  3. 3.
    Fowler G, Pashby IR, Shipway PH (2005) Abrasive waterjet controlled depth milling of Ti6Al4V alloy—an investigation of the role of jet–workpiece traverse speed and abrasive particle size on the characteristics of the milled material. J Mater Processing Technol 161:407–414CrossRefGoogle Scholar
  4. 4.
    Kong MC, Axinte D, Voice W (2011) An innovative method to perform mask less plain waterjet milling for pocket generation: a case study in Ti-based superalloys. Int J Mach Tools Manuf 51:642–648CrossRefGoogle Scholar
  5. 5.
    Hlavac LM, Hlavacova IM, Gembalova L, Kalicinsky J, Fabian S, Mestanek J, Kmec J, Madr V (2009) Experimental method for the investigation of the abrasive water jet cutting quality. J Mater Processing Technol 209:6190–6195CrossRefGoogle Scholar
  6. 6.
    Hloch S, Valıcek J (2012) Topographical anomaly on surfaces created by abrasive waterjet. Int J Adv Manuf Technol 59:593–604CrossRefGoogle Scholar
  7. 7.
    Selvan C, Raju M (2012) Abrasive waterjet cutting surfaces of ceramics—an experimental investigation. Int J Adv Sci Eng Technol Res 1:52–59Google Scholar
  8. 8.
    Brient A, Brissot M, Rouxel T, Sangleboeuf J-C (2011) Influence of grinding parameters on glass workpieces surface finish using response surface methodology. J Manuf Sci Eng 133:445011–445016CrossRefGoogle Scholar
  9. 9.
    Brient A., Laniel R., Miroir M., Le Goic G., Samper S., Sangleboeuf J.-C. (2015) Multi-scale topography analysis of waterjet pocketing of silica glass surfaces. Int Conf on Metrology and Properties of Engineering Surfaces, Charlotte (USA)Google Scholar
  10. 10.
    Hsu CY, Liang CC, Teng TL, Nguyen AT (2013) A numerical study on high-speed water jet impact. Ocean Eng 72:98–106CrossRefGoogle Scholar
  11. 11.
    Junkar M, Jurisevic B, Fajdiga M, Grah M (2006) Finite element analysis of single-particle impact in abrasive water jet machining. Int J Impact Eng 32:1095–1112CrossRefGoogle Scholar
  12. 12.
    El Tobgy MS, Ng E, Elbestawi MA (2005) Finite element modeling of erosion wear. Int J Mach Tools Manuf 45:1337–1346CrossRefGoogle Scholar
  13. 13.
    Kumar N, Shukla M (2012) Finite element analysis of multi-particle impact on erosion in abrasive water jet machining of titanium alloy. J Comput Appl Math 236:4600–4610zbMATHCrossRefGoogle Scholar
  14. 14.
    Anwar S, Axinte DA, Becker AA (2013) Finite element modelling of abrasive waterjet milled footprints. J Mater Processing Technol 213:180–193CrossRefGoogle Scholar
  15. 15.
    Mabrouki T, Raissi K, Cornier A (2000) A numerical simulation and experimental study of the interaction between a pure high velocity waterjet and targets: contribution to investigate the decoating process. Wear 239:260–273CrossRefGoogle Scholar
  16. 16.
    Zaki M. (2009) Modelisation et simulation numerique du procede de per¸cage non debouchant par jet d’eau abrasif, PhD thesis, Ecole Nationale Supérieure d'Arts et MétiersGoogle Scholar
  17. 17.
    Srinivasu DS, Axinte DA, Shipway PH, Folkes J (2009) Influence of kinematic operation parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics. Int J Mach Tools Manuf 49:1077–1088CrossRefGoogle Scholar
  18. 18.
    Cook BK, Noble DR, Williams JR (2004) A direct simulation method for particle-fluid system. Eng Comput 21:151–168zbMATHCrossRefGoogle Scholar
  19. 19.
    Haghbin N, Spelt JK, Papini M (2015) Abrasive waterjet micro-machining of channels in metals: model to predict high aspect-ratio channel profiles for submerged and unsubmerged machining. J Mater Processing Technol 222:399–409CrossRefGoogle Scholar
  20. 20.
    Haghbin N, Spelt JK, Papini M (2014) Abrasive waterjet micro-machining of channels in metals: comparison between machining in air and submerged in water. Int J Mach Tools Manuf 88:108–117CrossRefGoogle Scholar
  21. 21.
    Haghbin N, Ahmadzadeh F, Spelt JK, Papini M (2015) Effect of entrained air in abrasive water jet micro-machining: reduction of channel width and waviness using slurry entrainment. Wear 344- 345:99–109CrossRefGoogle Scholar
  22. 22.
    Tamannaee N, Spelt JK, Papini M (2009) Abrasive slurry jet micro-machining of edges, planar areas and transitional slopes in a talc-filled co-polymer. J Mater Processing Technol 209:5123–5132CrossRefGoogle Scholar
  23. 23.
    Miller DS (2004) Micromachining with abrasive waterjets. J Mater Processing Technol 149:37–42CrossRefGoogle Scholar
  24. 24.
    Folkes J (2009) Waterjet—an innovative tool for manufacturing. J Mater Processing Technol 209:6181–6189CrossRefGoogle Scholar
  25. 25.
    Nouraei H, Wodoslawsky A, Papini M, Spelt JK (2013) Characteristics of abrasive slurry jet micro-machining: A comparison with abrasive air jet micro-machining. J Mater Processing Technol 213:1711–1724CrossRefGoogle Scholar
  26. 26.
    Nouraei H, Kowsari K, Spelt JK, Papini M (2014) Surface evolution models for abrasive slurry jet micro-machining of channels and holes in glass. Wear 309:65–73CrossRefGoogle Scholar
  27. 27.
    Kowsari K, James DF, Papini M, Spelt JK (2014) The effects of dilute polymer solution elasticity and viscosity on abrasive slurry jet micro-machining of glass. Wear 309:112–119CrossRefGoogle Scholar
  28. 28.
    Kowsari K, Nouraei H, James DF, Spelt JK, Papini M (2014) Abrasive slurry jet micro-machining of holes in brittle and ductile materials. J Mater Processing Technol 214:1909–1920CrossRefGoogle Scholar
  29. 29.
    Nguyen T, Shanmugam DK, Wang J (2008) Effect of liquid properties on the stability of an abrasive waterjet. Int J Mach Tools Manuf 48:1138–1147CrossRefGoogle Scholar
  30. 30.
    Liu Z, Nouraei H, Spelt JK, Papini M (2015) Electrochemical slurry jet micro-machining of tungsten carbide with a sodium chloride solution. Precis Eng 40:189–198CrossRefGoogle Scholar
  31. 31.
    Liu Z, Nouraei H, Papini M, Spelt JK (2014) Abrasive enhanced electrochemical slurry jet micro-machining: comparative experiments and synergistic effects. J Mater Processing Technol 214:1886–1894CrossRefGoogle Scholar
  32. 32.
    Haj Mohammad Jafar R, Nouraei H, Emamifar M, Papini M, Spelt JK (2015) Erosion modeling in abrasive slurry jet micro-machining of brittle materials. J Manuf Process 17:127–140CrossRefGoogle Scholar
  33. 33.
    Momber A.W, Kovacevi R. (1998) Principles of abrasive water jet machining, Springer, LondonGoogle Scholar
  34. 34.
    Wang J (2006) Abrasive waterjet machining of engineering materials. Trans Tech Publications, Uetikon-ZuerichGoogle Scholar
  35. 35.
    Zeng J., Kim T. J. (1992) Development of an abrasive waterjet kerf cutting model for brittle materials, in: 11th Int Conf Jet Cut. Technol., St Andrews, Scotland, 43–47Google Scholar
  36. 36.
    Arola D., Ramulu M. (1993) Mechanism of material removal in abrasive waterjet machining of common aerospace materials, in: The seventh American water jet conference, 43–64Google Scholar
  37. 37.
    Momber AW, Eusch I, Kovacevic R (1996) Machining refractory ceramics with abrasive waterjet. J Mater Sci 31:6485–6493CrossRefGoogle Scholar
  38. 38.
    Arola D, Ramulu M (1996) A study of kerf characteristics in abrasive waterjet machining of graphite/epoxy composite. J Eng Mater Technol ASME 118:256–265CrossRefGoogle Scholar
  39. 39.
    Shanmugam DK, Nguyen T, Wang J (2008) A study of delamination on graphite/epoxy composites in abrasive waterjet machining. Composites Part A: Appl Sci Manuf 39:923–929CrossRefGoogle Scholar
  40. 40.
    Wang J (1999) Abrasive waterjet machining of polymer matrix composites-cutting performance erosive process and predictive models. Int J Adv Manuf Technol 15:757–768CrossRefGoogle Scholar
  41. 41.
    Lebar A, Junkar M (2003) Simulation of abrasive waterjet machining based on unit event features. Proc IMechE Part H: J Eng M 217:699–703CrossRefGoogle Scholar
  42. 42.
    Wang J (2007) Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. Int J Mech Sci 49:306–316CrossRefGoogle Scholar
  43. 43.
    Feng YX, Huang CZ, Wang J, Lu XY (2007) An experimental study on milling Al2O3 ceramics with abrasive waterjet. Key Eng Mater 339:500–504CrossRefGoogle Scholar
  44. 44.
    Shipway PH, Fowler G, Pashby IR (2005) Characteristics of the surface of a titanium alloy following milling with abrasive waterjets. Wear 258:123–132CrossRefGoogle Scholar
  45. 45.
    Hocheng H, Tsai HY, Shiue J, Wang B (1997) Feasibility study of abrasive waterjet milling of fiber-reinforced plastics. J Manuf Sci Eng, Trans ASME 119:133–142CrossRefGoogle Scholar
  46. 46.
    Xu S, Wang J (2006) A study of abrasive waterjet cutting of alumina ceramics with controlled nozzle oscillation. Int J Adv Manuf Technol 27:693–702CrossRefGoogle Scholar
  47. 47.
    Hashish M (1984) Cutting with abrasive waterjets. Mech Eng 106:60–69Google Scholar
  48. 48.
    Zeng J, Kim TJ (1996) Erosion model of poly crystalline ceramics in abrasive waterjet cutting. Wear 193:207–217CrossRefGoogle Scholar
  49. 49.
    Liu H, Wang J, Kelson N, Brown RJ (2004) A study of abrasive waterjet characteristics by CFD simulation. J Mater Processing Technol 153–154:488–493CrossRefGoogle Scholar
  50. 50.
    Hashish M (1991) Optimization factors in abrasive-waterjet machining. J Eng Industry, Trans ASME 113:29–37Google Scholar
  51. 51.
    Kovacevic R, Fang M (1994) Modeling of the influence of the abrasive waterjet cutting parameters on the depth of cut based on fuzzy rules. Int J Mach Tools Manuf 34:55–72CrossRefGoogle Scholar
  52. 52.
    Chen L, Siores E, Wong WCK (1996) Kerf characteristics in abrasive waterjet cutting of ceramic materials. Int J Mach Tools Manuf 36:1201–1206CrossRefGoogle Scholar
  53. 53.
    Wang J, Kuriyagawa T, Huang CZ (2003) An experimental study to enhance the cutting performance in abrasive waterjet machining. Mach Sci Technol 7:191–207CrossRefGoogle Scholar
  54. 54.
    Wang J, Guo DM (2003) The cutting performance in multi-pass abrasive waterjet machining of industrial ceramics. J Mater Processing Technol 133:371–377CrossRefGoogle Scholar
  55. 55.
    Siores E, Wong WCK, Chen L, Wager JG (1996) Enhancing abrasive waterjet cutting of ceramics by head oscillation techniques. CIRP Annals—Manuf Technol 45:327–330CrossRefGoogle Scholar
  56. 56.
    Hashish M (1989) Investigation of milling with abrasive-waterjets. J Eng Industry, Trans ASME 111:158–166CrossRefGoogle Scholar
  57. 57.
    Zeng J, Kim TJ (1996) Erosion model for abrasive waterjet milling of poly crystalline ceramics. Wear 199:275–282CrossRefGoogle Scholar
  58. 58.
    Feng YX, Huang CZ, Wang J, Lu XY, Zhu HT (2007) Surface characteristics of ceramics milled with abrasive waterjet technology. Key Eng Mater 329:335–340CrossRefGoogle Scholar
  59. 59.
    Guo Z, Ramulu M (2001) Investigation of displacement fields in an abrasive waterjet drilling process: part 1. Experimental measurements. Exp Mechanics 41:375–387CrossRefGoogle Scholar
  60. 60.
    Guo Z, Ramulu M (2001) Investigation of displacement fields in an abrasive water jet drilling process: part 2. Numerical analysis. Exp Mechanics 41:388–402CrossRefGoogle Scholar
  61. 61.
    Hashish M. (1993) Precision drilling of composites with abrasive-waterjets. American Society of Mechanical Engineers, Materials Division (Publication) MD45, Machining of Advanced Composites: 217–225Google Scholar
  62. 62.
    Hashish M, Whalen J (1993) Precision drilling of ceramic-coated components with abrasive- waterjets. J Eng Gas Turbines Power 115:148–154CrossRefGoogle Scholar
  63. 63.
    Piotr L, Krzysztof J, Piotr N (2016) Investigation of the effect of cutting speed on surface quality in abrasive water jet cutting of 316L stainless steel. Procedia Eng 149:276–282CrossRefGoogle Scholar
  64. 64.
    Rupam T, Madhulika S, Sergej H, Pavel A, Somnath C, Alok KD (2016) Instantaneous monitoring of acoustic emission during the disintegration of rock. Procedia Eng 149:481–488CrossRefGoogle Scholar
  65. 65.
    Thai N, Wang J, Li W (2015) Process models for controlled-depth abrasive waterjet milling of amorphous glasses. Int J Adv Manuf Technol 77:1177–1189CrossRefGoogle Scholar
  66. 66.
    Libor MH (2015) Application of water jet description on the de-scaling process. Int J Adv Manuf Technol 80:721–735CrossRefGoogle Scholar
  67. 67.
    Amir R, Iulian M, Dragos A (2012) Acoustic emission energy transfer rate: a method for monitoring abrasive waterjet milling. Int J Mach Tools Manuf 61:80–89CrossRefGoogle Scholar
  68. 68.
    Axinte DA, Stepanian JP, Kong MC, McGourlay J (2009) Abrasive waterjet turning—an efficient method to profile and dress grinding wheels. Int J Mach Tools Manuf 49:351–356CrossRefGoogle Scholar
  69. 69.
    Wang H, Lin W (2017) Removal model of rotation, revolution type polishing method. Precis Eng 50:515–521CrossRefGoogle Scholar
  70. 70.
    Somjet T, Thanya K (2016) Simulation study of cutting sugarcane using fine sand abrasive waterjet. Agr Nat Res 50:146–153Google Scholar
  71. 71.
    Faehnle OW, Brug HV, Frankena HJ (1998) Fluid jet polishing of optical surfaces. Appl Opt 37:6771–6773CrossRefGoogle Scholar
  72. 72.
    Faehnle O.W. (1998) Shaping and finishing of aspherical optical surfaces (PhD thesis). Delft UniversityGoogle Scholar
  73. 73.
    Axinte DA, Karpuschewski B, Kong MC, Beaucamp A, Anwar S, Miller D, Petzel M (2014) High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications. CIRP Annals – Manuf Technol 63:751–771CrossRefGoogle Scholar
  74. 74.
    Kong MC, Anwar S, Billingham J, Axinte DA (2012) Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets: part I—single straight paths. Int J Mach Tools Manuf 53:58–68CrossRefGoogle Scholar
  75. 75.
    Kulekci MK (2002) Processes and apparatus developments in industrial waterjet applications. Int J Mach Tools Manuf 42:1297–1306CrossRefGoogle Scholar
  76. 76.
    Beaucamp A, Namba Y, Freeman R (2012) Dynamic multiphase modeling and optimization of fluid jet polishing process. CIRP Ann–Manuf Technol 61:315–318CrossRefGoogle Scholar
  77. 77.
    Booij S.M. (2003) Fluid jet polishing—possibilities and limitations of a new fabrication technique (Ph.D. thesis). Delft UniversityGoogle Scholar
  78. 78.
    Beaucamp A, Namba Y (2013) Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing. CIRP Annals – Manuf Technol 62:315–318CrossRefGoogle Scholar
  79. 79.
    Tsai FC, Yan BH, Kuan CY, Huang FY (2008) A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel. Int J Mach Tools Manuf 48:932–945CrossRefGoogle Scholar
  80. 80.
    Beaucamp A, Namba Y, Messelink W, Walker D, Charlton P, Freeman R (2014) Surface integrity of fluid jet polished tungsten carbide. Procedia CIRP 13:377–381CrossRefGoogle Scholar
  81. 81.
    Zhu HT, Huang CZ, Wang J, Li QL, Che CL (2009) Experimental study on abrasive waterjet polishing for hard-brittle materials. Int J Mach Tools Manuf 49:569–578CrossRefGoogle Scholar
  82. 82.
    Ho L. T. (2015) Theoretical and experimental investigation of 3D-structured surface generation by computer controlled ultra-precision polishing (Ph.D. thesis). The Hong Kong PolyTechnic UniversityGoogle Scholar
  83. 83.
    Messelink W. M., Waeger R., Wons T., Meeder M., Heiniger K. C., Faehnle O. W. (2005) Prepolishing and finishing of optical surfaces using fluid jet polishing, optics, Proceeding of SPIE 5869, Opt. Manuf Test. VI, 586908Google Scholar
  84. 84.
    Cao Z, Walsh JL, Kong MG (2009) Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment. Appl Phy Lett 94:R55Google Scholar
  85. 85.
    Kim JY, Ballato J, Kim SO (2012) Intense and energetic atmospheric pressure plasma jet arrays. Plasma Process Polym 9:253–260CrossRefGoogle Scholar
  86. 86.
    Pan A, Chen T, Li CX, Hou X (2016) Parallel fabrication of silicon concave microlens array by fem to second laser irradiation and mixed acid etching. Chin Opt Lett 14:78–82Google Scholar
  87. 87.
    Takino H, Hosaka T (2014) Shaping of steel mold surface of lens array by electrical discharge machining with single rod electrode. Appl Opt 53:8002–8005CrossRefGoogle Scholar
  88. 88.
    Takino H, Hosaka T (2016) Shaping of steel mold surface of lens array by electrical discharge machining with spherical ball electrode. Appl Opt 55:4967–4973CrossRefGoogle Scholar
  89. 89.
    Mohammad AM, Seyed JH (2017) Modeling of abrasive flow rotary machining process by artificial neural network. Int J Adv Manuf Technol 89:125–132CrossRefGoogle Scholar
  90. 90.
    Azlan MZ, Habibollah H, Safian S (2011) Optimization of process parameters in the abrasive waterjet machining using integrated SA–GA. Appl Soft Comput 11:5350–5359CrossRefGoogle Scholar
  91. 91.
    Liu D, Huang C, Wang J, Zhu H, Yao P, Liu Z (2014) Modeling and optimization of operation parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box–Behnken design. Ceram Int 40:7899–7908CrossRefGoogle Scholar
  92. 92.
    Schwartzentruber J, Papini M (2015) Abrasive waterjet micro-piercing of borosilicate glass. J Mater Processing Technol 219:143–154CrossRefGoogle Scholar
  93. 93.
    Huang R, Luo X, Ji B, Wang P, Yu A, Zhai Z, Zhou J (2015) Multi-objective optimization of a mixed-flow pump impeller using modified NSGA-II algorithm. Sci Chin Technol Sci 58:2122–2130CrossRefGoogle Scholar
  94. 94.
    Znamenskaya A, Nersesyan DA, Sysoev NN, Yu E, Koroteeva Y, Shirshov N (2016) An optical study of high-pressure waterjet dynamics. Mosc Univ Phys Bull 71:405–412CrossRefGoogle Scholar
  95. 95.
    Guillerna AB, Axinte D, Billingham J (2015) The linear inverse problem in energy beam processing with an application to abrasive waterjet machining. Int J Mach Tools Manuf 99:34–42CrossRefGoogle Scholar
  96. 96.
    Wang R, Wang M (2010) A two-fluid model of abrasive waterjet. J Mater Processing Technol 210:190–196CrossRefGoogle Scholar
  97. 97.
    Liang Z, Xie B, Liao S, Zhou J (2015) Concentration degree prediction of AWJ grinding effectiveness based on turbulence characteristics and the improved ANFIS. Int J Adv Manuf Technol 80:887–905CrossRefGoogle Scholar
  98. 98.
    Droubi MG, Reuben RL, White G (2015) Monitoring acoustic emission (AE) energy in slurry impingement using a new model for particle impact. Mech Syst Signal Pr 62-63:415–430CrossRefGoogle Scholar
  99. 99.
    Zhou J, Andrea V, Paolo C (2014) A novel approach for predicting the operation of external gear pumps under cavitating conditions. Simul Model Pract Th 45:35–49CrossRefGoogle Scholar
  100. 100.
    Liang Z, Ye B (2012) Performance comparison between fluid models in turbulence kinetic energy computation. J Dig Content Technol Appl 6:335–342Google Scholar
  101. 101.
    Liang ZW, Liu X, Ye BY (2012) Optimization of turbulence image chromatic data based on surface construction and RANSAC estimation. J Comput 7:1786–1795Google Scholar
  102. 102.
    Liang Z, Ye B (2011) Multi-resolution vector optimization of integrated chip image chromatic vectors. Int J Adv Comput Technol 3:170–177Google Scholar
  103. 103.
    Anwar S, Axinte DA, Becker AA (2013) Finite element modelling of over lapping abrasive waterjet milled footprints. Wear 303:426–436CrossRefGoogle Scholar
  104. 104.
    Shimizu K, Noguchi T, Seitoh H, Okada M, Matsubara Y (2001) FEM analysis of erosive wear. Wear 250:779–784CrossRefGoogle Scholar
  105. 105.
    Chen Q, Li DY (2003) Computer simulation of solid particle erosion. Wear 254:203–210CrossRefGoogle Scholar
  106. 106.
    ElTobgy MS, Ng E, Elbestawi MA (2005) Finite element modeling of erosive wear. Int J Mach Tools Manuf 45:1337–1346CrossRefGoogle Scholar
  107. 107.
    Johnson G.R., Cook W.H. (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proc. the 7th Int Sym. on Ballistics, the Hague, the NetherlandsGoogle Scholar
  108. 108.
    Takaffoli M, Papini M (2012) Material deformation and removal due to single particle impacts on ductile materials using smoothed particle hydrodynamics. Wear 274–275:50–59CrossRefGoogle Scholar
  109. 109.
    Takaffoli M, Papini M (2012) Numerical simulation of solid particle impacts on Al6061-T6. Part I: three-dimensional representation of angular particles. Wear 100–110:s292–s293Google Scholar
  110. 110.
    Takaffoli M, Papini M (2012) Numerical simulation of solid particle impacts on Al6061-T6. Part II: materials removal mechanisms for impact of multiple angular particles. Wear 296:648–655CrossRefGoogle Scholar
  111. 111.
    Junkar M, Jurisevic B, Fajdiga M, Grah M (2006) Finite element analysis of single-particle impact in abrasive waterjet machining. Int J Impact Eng 32:1095–1112CrossRefGoogle Scholar
  112. 112.
    Nicholls JR, Stephenson DJ (1995) Monte Carlo modelling of erosion processes. Wear 186–187:64–77CrossRefGoogle Scholar
  113. 113.
    Verspui MA, De G, Corbijn A, Slikkerveer PJ (1999) Simulation model for the erosion of brittle materials. Wear 233–235:436–443CrossRefGoogle Scholar
  114. 114.
    Lebar A, Junkar M (2004) Simulation of abrasive waterjet cutting process: part 1. Unit event approach. Model Simul Mater Sci Eng 12:1159–1170CrossRefGoogle Scholar
  115. 115.
    Orbanic H, Junkar M (2004) Simulation of abrasive waterjet cutting process: part 2. Cellular automata approach. Model Simul Mater Sci Eng 12:1171–1184CrossRefGoogle Scholar
  116. 116.
    Wang Y, Yang Z (2008) Finite element model of erosive wear on ductile and brittle materials. Wear 265:871–878CrossRefGoogle Scholar
  117. 117.
    Li WY, Wang J, Zhu H, Huang C (2014) On ultrahigh velocity micro-particle impact on steels: a multiple impact study. Wear 309:52–64CrossRefGoogle Scholar
  118. 118.
    Li WY, Wang J, Zhu H, Li H, Huang C (2013) On ultra high velocity micro-particle impact on steels: a single impact study. Wear 305:216–227CrossRefGoogle Scholar
  119. 119.
    Lozano TP, Axinte DA, Billingham J (2015) Stochastic modelling of abrasive waterjet foot prints using finite element analysis. Int J Mach Tools Manuf 95:39–51CrossRefGoogle Scholar
  120. 120.
    Nouraei H, Kowsari K, Samareh B, Spelta JK, Papini M (2016) Calibrated CFD erosion modeling of abrasive slurry jet micro-machining of channels in ductile materials. J Manuf Process 23:90–101CrossRefGoogle Scholar
  121. 121.
    Lebar A, Marko J, Izidor S, Drešar P, Valentinčič J (2016) AWJ cutting process control by means of process visualisation. Procedia Eng 149:224–228CrossRefGoogle Scholar
  122. 122.
    Manu R, Ramesh BN (2009) An erosion-based model for abrasive waterjet turning of ductile materials. Wear 266:1091–1097CrossRefGoogle Scholar
  123. 123.
    Putz M, Dittrich M, Dix M (2016) Process instantaneous monitoring of abrasive waterjet formation. Procedia CIRP 46:43–46CrossRefGoogle Scholar
  124. 124.
    Mieszala M, Lozano TP, Axinte DA, Schwiedrzik J, Guo Y, Mischler S, Michler J, Philippe L (2017) Erosion mechanisms during abrasive waterjet machining: model micro-structures and single particle experiments. J Mater Processing Technol 247:92–102CrossRefGoogle Scholar
  125. 125.
    Kyriaki M, Thomas K, Nicholaos B, Aristomenis A (2007) A finite element-based model for pure waterjet process simulation. Int J Adv Manuf Technol 31:933–940CrossRefGoogle Scholar
  126. 126.
    Romain L, Otman B, Antoine B, Mathieu M (2017) Discrete elements model of an abrasive waterjet through the focal canon to the work-piece. Procedia CIRP 58:529–534CrossRefGoogle Scholar
  127. 127.
    Thomas DJ (2013) Characterization of aggregate notch cavity formation properties on abrasive waterjet cut surfaces. J Manuf Process 15:355–363CrossRefGoogle Scholar
  128. 128.
    Alberdi A, Suárez A, Artaza T, Escobar-Palafox GA, Ridgway K (2013) Composite cutting with abrasive water jet. Procedia Eng 63:421–429CrossRefGoogle Scholar
  129. 129.
    Zhu D, Zhang R, Liu C (2017) Flow field improvement by optimizing turning profile at electrolyte inlet in electrochemical machining. Int J Precis Eng Manuf 18:15–22CrossRefGoogle Scholar
  130. 130.
    Yang F, Ren T, Wang H, Liu B, Chen M (2017) Analysis of flow field for electrochemical machining metal screw pump stator. Int J Adv Manuf Technol 89:1317–1326CrossRefGoogle Scholar
  131. 131.
    Wang J, Gao N, Gong W (2010) Abrasive waterjet machining simulation by SPH method. Int J Adv Manuf Technol 50:227–234CrossRefGoogle Scholar
  132. 132.
    Matsumura R, Muramatsu T, Fueki S (2011) Abrasive water jet machining of glass with stagnation effect. CIRP Annals - Manuf Technol 60:355–358CrossRefGoogle Scholar
  133. 133.
    Hou R, Huang C, Zhu H (2014) Numerical simulation ultrahigh waterjet (WJ) flow field with the high-frequency velocity vibration at the nozzle inlet. Int J Adv Manuf Technol 71:1087–1092CrossRefGoogle Scholar
  134. 134.
    Zhang D, Shi W, Esch MBP, Shi L, Michel D (2015) Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump. Comput Fluids 112:61–71CrossRefGoogle Scholar
  135. 135.
    Phillip D, Karl D (2015) Scaling and numerical analysis of nonuniform waterjet pump inflows. IEEE J Ocean Eng 40:701–709CrossRefGoogle Scholar
  136. 136.
    Huang R, Ji B, Luo X, Zhai Z, Zhou J (2015) Numerical investigation of cavitation-vortex interaction in a mixed-flow waterjet pump. J Mech Sci Technol 29:3707–3716CrossRefGoogle Scholar
  137. 137.
    Long X, Ruan X, Liu Q, Chen Z, Xue S, Wu Z (2017) Numerical investigation on the internal flow and the particle movement in the abrasive waterjet nozzle. Powder Techno 314:635–640CrossRefGoogle Scholar
  138. 138.
    EITobgy M, Ng EG, Elbestawi MA (2005) Modelling of abrasive waterjet machining: a new approach. CIRP Ann 54:285–288CrossRefGoogle Scholar
  139. 139.
    Giovanna R, Domenico U (2014) Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy. CIRP Annals - Manuf Technol 63:69–72CrossRefGoogle Scholar
  140. 140.
    Cao Z, Cheung C, Ren M (2016) Modelling and characterization of surface generation in fluid jet polishing. Precis Eng 43:406–417CrossRefGoogle Scholar
  141. 141.
    Cao Z, Cheung C (2014) Theoretical modelling and analysis of the material removal characteristics in fluid jet polishing. Int J Mech Sci 89:158–166CrossRefGoogle Scholar
  142. 142.
    Jiang H, Liu Z, Gao K (2017) Numerical simulation on rock fragmentation by discontinuous waterjet using coupled SPH/FEA method. Powder Technol 312:248–259CrossRefGoogle Scholar
  143. 143.
    Lee J, Park K, Kang M, Kang B, Shin B (2012) Experiments and computer simulation analysis of impact behaviors of micro-sized abrasive in waterjet cutting of thin multiple layered materials. Trans Nonferrous Metals Soc Chin 22:864–869CrossRefGoogle Scholar
  144. 144.
    Li W, Wang J, Zhu H, Li H, Huang C (2014) On ultra high velocity micro-particle impact on steels—a single impact study. Wear 309:52–64CrossRefGoogle Scholar
  145. 145.
    Li M, Bao R, Guo Y (2008) Waterjet penetration simulation by hybrid code of SPH and FEA. Int J Impact Eng 35:1035–1042CrossRefGoogle Scholar
  146. 146.
    Zeng J, Kim TJ (1996) An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear 193:207–217CrossRefGoogle Scholar
  147. 147.
    Liang Z, Liu X, Ye B (2012) Fuzzy performance between surface fitting and energy distribution in turbulence runner. Sci World J 25:408949Google Scholar
  148. 148.
    Liang Z, Shan S, Liu X, Wen Y (2017) Fuzzy prediction of AWJ turbulence characteristics by using multi-phase flow models. Eng Appl Comput Fluid Dynamics 11:225–257Google Scholar
  149. 149.
    Liang Z, Tao J, Liu X, Wu D (2012) Engineering impact investigation of turbulence image features on the computation of flow kinetic energy. Int J Simul Process Model 7:3–15CrossRefGoogle Scholar
  150. 150.
    Liang Z, Liu X (2014) Four-dimensional fuzzy relation investigation in turbulence kinetic energy distribution, surface cluster modeling. Arab J Sci Eng 39:2339–2351CrossRefGoogle Scholar
  151. 151.
    Hocheng H, Chang KR (1994) Material removal analysis in abrasive waterjet cutting of ceramic plate. J Mater Processing Technol 40:287–304CrossRefGoogle Scholar
  152. 152.
    Capello E., Monno M., Semeraro Q., Milano P. (1994) Delamination in water jet cutting of multi-layered composite material. In: Proc. the 12th conf jet cutting technol, 463–476Google Scholar
  153. 153.
    Wang J (1999) Abrasive waterjet machining of polymer matrix composites: cutting performance, erosive analysis and predictive models. Int J Adv Manuf Technol 15:757–768CrossRefGoogle Scholar
  154. 154.
    Wang J, Guo D (2002) A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites. J Mater Processing Technol 121:390–394CrossRefGoogle Scholar
  155. 155.
    Kovacevic R, Hashish M, Mohan R (1997) State of the art of research and development in abrasive waterjet machining. J Manuf Sci Eng 119:776–785CrossRefGoogle Scholar
  156. 156.
    van Luttervelt CA (1989) On the selection of manufacturing methods illustrated by an overview of separation techniques for sheet materials. Ann CIRP 38:587–607CrossRefGoogle Scholar
  157. 157.
    Orbanic H, Junkar M (2008) Analysis of striation formation mechanism in abrasive water jet cutting. Wear 265:821–830CrossRefGoogle Scholar
  158. 158.
    John RJJ, Ramesh BN (2016) Condition instantaneous monitoring of orifice in abrasive waterjet cutting system using high pressure sensor. Procedia Manuf 5:578–593CrossRefGoogle Scholar
  159. 159.
    Orbanic H, Junkar M, Bajsic I, Lebar A (2009) An instrument for measuring abrasive waterjet diameter. Int J Mach Tools Manuf 49:843–849CrossRefGoogle Scholar
  160. 160.
    Kahlmana L, Öjmertz KMC, Falk LKL (2001) Abrasive-waterjet testing of thermo-mechanical wear of ceramics. Wear 248:16–28CrossRefGoogle Scholar
  161. 161.
    Gent M., Menéndez M., Torno S., Torano J., Schenk A. (2012) Experimental evaluation of the physical properties required of abrasives for optimizing waterjet cutting of ductile materials. Wear s284–285: 43–51Google Scholar
  162. 162.
    Andrzej P (2016) Abrasive suspension water jet cutting optimization using orthogonal array design. Procedia Eng 149:366–373CrossRefGoogle Scholar
  163. 163.
    Wang J, Cheung CF, Ho L, Liu MY, Lee WB (2017) A novel multi-jet polishing process and tool for high-efficiency polishing. Int J Mach Tools Manuf 115:60–73CrossRefGoogle Scholar
  164. 164.
    Ján C, Sergej H, Petr H, Miroslav G, Dagmar K, František B, Dušan M, Dominika L (2016) Hydro-abrasive disintegration of alloy Monel K-500—the influence of technological and abrasive factors on the surface quality. Procedia Eng 149:17–23CrossRefGoogle Scholar
  165. 165.
    Milena K, Michal Ř, Jan V, Sergej H, Milan K (2012) Determination of technologically optimal factors of modulated waterjet. Int J Adv Manuf Technol 60:173–179CrossRefGoogle Scholar
  166. 166.
    Iman Z., Mehdi Z., Massimiliano A. (2014) Investigation of the effects of machining parameters on material removal rate in abrasive waterjet turning. Adv Mec. Eng, Article 624203Google Scholar
  167. 167.
    Sookhak Lari MR, Ghazavi A, Papini M (2017) A rotating mask system for sculpting of three-dimensional features using abrasive jet micro-machining. J Mater Processing Technol 243:62–74CrossRefGoogle Scholar
  168. 168.
    Libor MH, Daniel K, Irena MH, Sławomir S (2017) Precision comparison of analytical and statistical-regression models for AWJ cutting. Precis Eng 50:148–159CrossRefGoogle Scholar
  169. 169.
    Azlan MZ, Habibollah H, Safian S (2011) Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA. Expert Syst Appl 38:8316–8326CrossRefGoogle Scholar
  170. 170.
    Gupta TVK, Ramkumar J, Puneet T, Vyas NS (2015) Application of artificial neural networks in abrasive water jet milling. Procedia CIRP 37:225–229CrossRefGoogle Scholar
  171. 171.
    Ashanira MD, Azlan MZ, Roselina S (2011) Overview of support vector machine in modeling machining performances. Procedia Eng. 24:308–312CrossRefGoogle Scholar
  172. 172.
    Norfadzlan Y, Arezoo S, Azlan MZ, Siti ZMH, Norafida I (2014) Estimation of optimal machining control parameters using artificial bee colony. J Intell Manuf 25:1463–1472CrossRefGoogle Scholar
  173. 173.
    Rabania A, Madariaga J, Bouvier C, Axinte D (2016) An approach for using iterative learning for controlling the jet penetration depth in abrasive waterjet milling. J Manuf Process 22:99–107CrossRefGoogle Scholar
  174. 174.
    Vundavilli PR, Parappagoudar MB, Kodali SP, Surekha B (2012) Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process. Knowledge-Based Syst 27:456–464CrossRefGoogle Scholar
  175. 175.
    Iulian M, Axinte A (2011) An automated monitoring solution for avoiding an increased number of surface anomalies during milling of aerospace alloys. Int J Mach Tools Manuf 51:349–357CrossRefGoogle Scholar
  176. 176.
    Axinte A, Kong MC (2009) An integrated monitoring method to supervise waterjet machining. CIRP Annals - Manuf Technol 58:303–306CrossRefGoogle Scholar
  177. 177.
    Deepak D, Anjaiah D, Karanth KV, Sharma NY (2012) CFD simulation of flow in an abrasive water suspension jet: the effect of inlet operating pressure and volume fraction on skin friction and exit kinetic energy. Adv Mech Eng 2012:65–88Google Scholar
  178. 178.
    Deepak D, Devineni A, Sharma NY. (2011) Effect of diameter ratio, volume fraction and abrasive grain size on the exit velocity by numerical simulation of flow through abrasive water suspension jet nozzle using DOE. WaterJet Technology Association WJTA ConferenceGoogle Scholar
  179. 179.
    Azimi AH, Zhu DZ, Rajaratnam N (2012) Computational investigation of vertical slurry jets in water. Int J Multiphase Flow 47:94–114CrossRefGoogle Scholar
  180. 180.
    Hu G, Zhu W, Cai H, Xu C, Bai Y, Cheng J, Yuan J, Yu T (2009) Mathematical model for abrasive suspension jet cutting based on orthogonal test design. J Shanghai Univ 13:37–44CrossRefGoogle Scholar
  181. 181.
    Liu X, Yu T, Wang W (2006) Prediction of the cutting depth of abrasive suspension jet using a BP artificial neural network. IFIP Int Conf Theoretical Comput Sci 207:563–569Google Scholar
  182. 182.
    Wang W, Yu T, Liu X, Liu T (2006) Fuzzy decision on traverse speed for abrasive suspension jet. Springer, 327:1160–1161Google Scholar
  183. 183.
    Jiang S, Xia Y, Popescu R, Mihai C, Tan K (2005) Cutting capability equation at abrasive suspension jet. WaterJet Technology Association WJTA Conference Google Scholar
  184. 184.
    Kinik D, Gánovská B, Hloch S, Monka P, Monková K, Hutyrová Z (2015) On-line instantaneous monitoring of technological process of material abrasive water jet cutting. Tehnicki Vjesnik 22:351–357CrossRefGoogle Scholar
  185. 185.
    Liang ZW, Ye BY (2012) Three-dimensional fuzzy influence analysis of fitting algorithms on integrated chip topographic modeling. J Mech Sci Technol 26:3177–3191CrossRefGoogle Scholar
  186. 186.
    Liang Z, Liu X, Zhou J, Liao S (2016) Video tracking for high-similarity drug tablets based on reflective energy intensity matrix and fuzzy recognition system. Proc IMechE Part H: J Eng M 230:211–229Google Scholar
  187. 187.
    Liang Z., Zhou L., Liu X., Wang X. (2014) Image tracking for the high-similarly drug tablet based on light intensity reflective-energy and artificial neural network. Comput Math Methods M., Article ID 304685Google Scholar
  188. 188.
    Liang ZW, Liu X, Ye BY, Wang J (2013) Performance investigation of fitting algorithms in surface micro-topography grinding processes based on multi-dimensional fuzzy relation set. Int J Adv Manuf Technol 67:2779–2798CrossRefGoogle Scholar
  189. 189.
    Ming CK, Devadula S, Axinte D, Wayne V, Jamie M, Bernard H (2013) On geometrical accuracy and integrity of surfaces in multi-mode abrasive waterjet machining of NiTi shape memory alloys. CIRP Annals - Manuf Technol. 62:555–558CrossRefGoogle Scholar
  190. 190.
    Liu HT (2010) Waterjet technology for machining fine features pertaining to micromachining. J Manuf Process 12:8–18CrossRefGoogle Scholar
  191. 191.
    Wang J (2009) A new model for predicting the depth of cut in abrasive waterjet contouring of alumina ceramics. J Mater Processing Technol 209:2314–2320CrossRefGoogle Scholar
  192. 192.
    Derzija B, Ahmet C, Muhamed M, Almina D (2015) Experimental study on surface roughness in abrasive water jet cutting. Procedia Eng. 100:394–399CrossRefGoogle Scholar
  193. 193.
    Krajcarz D (2014) Comparison metal water jet cutting with laser and plasma cutting. In: Proceeding of 24th DAAAM Int Sym. on intelligent manufacturing and automation. Procedia Eng 69:838–843CrossRefGoogle Scholar
  194. 194.
    Hlavac LM, Hlavacova IM, Gembalova L, Kalicinsky J, Fabian S, Mestanek J, Kmec J, Madr V (2009) Experimental method investigation of the abrasive water jet cutting quality. J Mater Processing Technol 209:6190–6195CrossRefGoogle Scholar
  195. 195.
    Kechagias J, Petropoulos G, Vaxevanidis N (2012) Application of Taguchi design for quality characterization of abrasive water jet machining of TRIP sheet steels. Int J Adv Manuf Technol 62:635–643CrossRefGoogle Scholar
  196. 196.
    Akkurt A, Kulekci MK, Seker U, Ercan F (2004) Effect of feed rate on surface roughness in abrasive waterjet cutting applications. J Mater Processing Technol 147:389–396CrossRefGoogle Scholar
  197. 197.
    Axinte DA, Srinivasu DS, Kong MC, Butler-Smith PW (2009) Abrasive waterjet cutting of polycrystalline diamond; a preliminary investigation. Int J Mach Tools Manuf 49:797–803CrossRefGoogle Scholar
  198. 198.
    Gokhan A, Izzet K, Coskun H (2014) Artificial neural network and regression models for performance prediction of abrasive waterjet in rock cutting. Int J Adv Manuf Technol 75:1321–1330CrossRefGoogle Scholar
  199. 199.
    Oh T, Cho G (2016) Rock cutting depth model based on kinetic energy of abrasive waterjet. Rock Mech Rock Eng 49:1059–1072CrossRefGoogle Scholar
  200. 200.
    Sookhak Lari MR, Papini M (2016) Inverse methods to gradient etch three-dimensional features with prescribed topographies using abrasive jet micro-machining: part I—modeling. Precis Eng 45:272–284CrossRefGoogle Scholar
  201. 201.
    Sookhak Lari MR, Teti M, Papini M (2016) Inverse methods to gradient etch three-dimensional features with prescribed topographies using abrasive jet micro-machining: part II—verification with micro-machining experiments. Precis Eng 45:262–271CrossRefGoogle Scholar
  202. 202.
    Hassan AI, Chen C, Kovacevic R (2004) On-line instantaneous monitoring of depth of cut in AWJ cutting. Int J Mach Tools Manuf 44:595–605CrossRefGoogle Scholar
  203. 203.
    Libor MH (2009) Investigation of the abrasive water jet trajectory curvature inside the kerf. J Mater Processing Technol 209:4154–4161CrossRefGoogle Scholar
  204. 204.
    Iulian M, Axinte DA (2008) A critical analysis of effectiveness of acoustic emission signals to detect tool and workpiece malfunctions in milling operations. Int J Mach Tools Manuf 48:1148–1160CrossRefGoogle Scholar
  205. 205.
    Liang Z, Liao S, Wen Y, Liu X (2016) Working parameter optimization of strengthen waterjet grinding with the orthogonal-experiment-design-based ANFIS. J Intel Manuf. 30:1–22 Google Scholar
  206. 206.
    Liang ZW, Tan SS, Liao SP, Liu X (2016) Component parameter optimization of strengthen waterjet grinding slurry with the orthogonal-experiment-design-based ANFIS. Int J Adv Manuf Technol 90:1–25CrossRefGoogle Scholar
  207. 207.
    Richerson D. W. (2006) Modern ceramic engineering: properties, processing and use in design, CRC, Boca Raton.Google Scholar
  208. 208.
    Samant AN, Dahotre NB (2009) Laser machining of structural ceramics—a review. J Eur Ceramic Soc 40:287–304Google Scholar
  209. 209.
    Tuersley IP, Jawaid A, Pashby IR (1994) Review: Various methods of machining advanced ceramic materials. J Mater Processing Technol 42:377–390CrossRefGoogle Scholar
  210. 210.
    Hashish M. (1987) Milling with abrasive waterjets: a preliminary investigation. In: Proc. the 4th US waterjet conference, Berkeley, CA, 1–10Google Scholar
  211. 211.
    Chen L, Siores E, Wong WCK (1998) Optimising abrasive waterjet cutting of ceramic materials. J Mater Processing Technol 74:251–254CrossRefGoogle Scholar
  212. 212.
    Zeng J, Munoz J., Kain I. (1997) Milling ceramics with abrasive waterjets—an experimental investigation, In: Proc. the 9th American waterjet conference dear born, Michigan, 93–107Google Scholar
  213. 213.
    Gudimetla P, Wang J, Wong W (2002) Kerf formation analysis in the abrasive waterjet cutting of industrial ceramics. J Mater Processing Technol 128:123–129CrossRefGoogle Scholar
  214. 214.
    Momber AW, Kovacevic R (2003) Hydro abrasive erosion of refractory ceramics. J Mater Sci 38:2861–2874CrossRefGoogle Scholar
  215. 215.
    Freist B., Haferkamp H., Laurinat A., Louis H. (1989) Abrasive waterjet machining of ceramic products. In: Proc. the 5th American waterjet conference, Toronto, Canada, 191–204Google Scholar
  216. 216.
    Laurinat A., Louis H., Wiechert G.M. (1993) A model formilling with abrasive water jets. In: Proc. the 7th American waterJet conference, Seattle, Washington, 119–139Google Scholar
  217. 217.
    Ojmertz K. M. C. (1997) A study on abrasive waterjet milling, Ph. D. thesis, Chalmers University of TechnologyGoogle Scholar
  218. 218.
    Ojmertz K. M. C., Amini N. (1994) A discrete approach to the abrasive waterjet milling process. In: Proc. the 12th Int Conf Jet Cutting Technol, 425–434Google Scholar
  219. 219.
    Momber A. W., Kovacevic R. (1997) Principles of abrasive waterjet machining, Springer, TexasGoogle Scholar
  220. 220.
    Hashish M (1993) The effect of beam angle in abrasive waterjet machining. Trans ASME, J Eng Industry 115:51–56CrossRefGoogle Scholar
  221. 221.
    Wang J (2003) The effect of jet impinging angle on the cutting performance in AWJ machining of alumina ceramics. Key Eng Mater 238–239:117–122CrossRefGoogle Scholar
  222. 222.
    Atmani Z, Haddag B, Nouari M, Zenasni M (2016) Combined micro-structure-based flow stress and grain size evolution models for multi-physics modelling of metal machining. Int J Mech Sci 118:77–90CrossRefGoogle Scholar
  223. 223.
    Azizur RM, Mustafizur R, Senthil KA (2017) Modelling of flow stress by correlating the material grain size and chip thickness in ultra-precision machining. Int J Mach Tools Manuf 123:57–75CrossRefGoogle Scholar
  224. 224.
    Lenka K, Radim K, Terry CL (2017) Advances in metals and alloys for joint replacement. Prog Mater Sci 88:232–280CrossRefGoogle Scholar
  225. 225.
    Fu Y, Wang X, Gao H, Wei H, Li S (2016) Blade surface uniformity of blisk finished by abrasive flow machining. Int J Adv Manuf Technol 84:1725–1735CrossRefGoogle Scholar
  226. 226.
    Axinte DA, Srinivasu DS, Kong MC, Butler-Smith PW (2009) Abrasive waterjet cutting of poly crystalline diamond: a preliminary investigation. Int J Mach Tools Manuf 49:797–803CrossRefGoogle Scholar
  227. 227.
    Akshay H, Redouane Z, Laurent C, Sabine L, Francis C (2017) Surface and machining in duced damage characterization of abrasive waterjet milled carbon/epoxy composite specimens and their impact on tensile behavior. Wear 1356–1364:s376–s377Google Scholar
  228. 228.
    Dadkhahipour K, Nguyen T, Wang J (2012) Mechanisms of channel formation on glasses by abrasive waterjet milling. Wear 1–10:s292–s293Google Scholar
  229. 229.
    Shanmugam DK, Masood SH (2009) An investigation on kerf characteristics in abrasive waterjet cutting of layered composites. J Mater Processing Technol 209:3887–3893CrossRefGoogle Scholar
  230. 230.
    Santhanakumar M, Adalarasan R, Rajmohan M (2016) Parameter design for cut surface characteristics in abrasive waterjet cutting of Al/SiC/Al2O3 composite using grey theory based RSM. J Mech Sci Technol 30:371–379CrossRefGoogle Scholar
  231. 231.
    Alberdi A, Artaza T, Suárez A, Rivero A, Girot F (2016) An experimental study on abrasive waterjet cutting of CFRP/Ti6Al4V stacks for drilling operations. Int J Adv Manuf Technol 86:691–704CrossRefGoogle Scholar
  232. 232.
    Gokhan A, Serkan K, Izzet K (2017) Utilization of solid-cutting waste of granite as an alternative abrasive in abrasive waterjet cutting of marble. J Cleaner Production 159:241–247CrossRefGoogle Scholar
  233. 233.
    Vatul’yan AO, Nesterov SA (2017) Certain aspects of identification of the inhomogeneous prestressed state in thermoelastic bodies. J Appl Math Mech 81:71–76MathSciNetCrossRefGoogle Scholar
  234. 234.
    Azizur RM, Mustafizur R, Senthil KA (2017) Chip perforation and ‘burnishing–like’ finishing of Al alloy in precision machining. Precis Eng 50:393–409CrossRefGoogle Scholar
  235. 235.
    Hlavacova IM, Geryk V (2017) Abrasives for waterjet cutting of high-strength and thick hard materials. Int J Adv Manuf Technol 90:1217–1224CrossRefGoogle Scholar
  236. 236.
    Yigit MA, Tugrul Ö (2015) Prediction of machining induced micro structure in Ti–6Al–4V alloy using 3-D FE-based simulations: effects of tool micro-geometry, coating and cutting conditions. J Mater Processing Technol 220:1–26CrossRefGoogle Scholar
  237. 237.
    Kong MC, Axinte D, Voice W (2010) Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide. J Mater Processing Technol 210:573–584CrossRefGoogle Scholar
  238. 238.
    Fowler G, Pashby IR, Shipway PH (2009) The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266:613–620CrossRefGoogle Scholar
  239. 239.
    Liang Z, Liu X, Ye B, Xie B (2016) Experimental result comparisons of curve fitting algorithms on fluid path lines modeling in strengthen grinding flow field. Exp Tech 40:715–735CrossRefGoogle Scholar
  240. 240.
    Liang ZW, Liu X, Ye BY (2013) Investigation of mutual cross-correlation between integrated chip topography modelling and its image features. Int J Comput Mater Sci Surf Eng 5:154–176Google Scholar
  241. 241.
    Kim T. J., Sylvia J. G., Posner L. (1985) Piercing and cutting of ceramics by abrasive waterjet. In: Proceedings PED of the Int Sym. on machining of ceramic materials and components, 1985 ASME winter annual meeting, 17: 19–24Google Scholar
  242. 242.
    Schwetz K. A., Knoch H. (1993) Tribological and erosion characteristics of silicon carbide and boron carbide structural ceramics. In: P. Durán, J. F. Fernández (Eds.), Third Euro-ceramics, Faenza Editrice Ibérica S. L. 1125–1144Google Scholar
  243. 243.
    Ness E., Dubensky E., Haney C., Mort G., Sing P. J. (1994) New developments in ROCTEC composite carbides for use in abrasive waterjet applications. In: Proc. the 12th Int Conf on Jet Cutting Technology, Rouen, FranceGoogle Scholar
  244. 244.
    Kahlman L., Hollander E., Carlsson R. (1994) Thermal spalling wear and mechanical behaviour of silicon carbide and ceramic composites. In: Proc. the 8th CIMTEC, World Ceramic Congress, FlorenceGoogle Scholar
  245. 245.
    Vijay KP, Choudhury SK (2014) Fabrication and analysis of micro-pillars by abrasive water jet machining. Procedia Mater Sci 6:61–71CrossRefGoogle Scholar
  246. 246.
    Kantha BK, Krishnaiah COV (2006) A study on the use of single mesh size abrasives in abrasive waterjet machining. Int J Adv Manuf Technol 29:532–540CrossRefGoogle Scholar
  247. 247.
    John RJJ, Ramesh BN (2005) A strategy for efficient and quality cutting of materials with abrasive waterjets considering the variation in orifice and focusing nozzle diameter. Int J Mach Tools Manuf 45:1443–1450CrossRefGoogle Scholar
  248. 248.
    Yang F, Shiah S, Heh T (2009) The effect of orifice lead cutting edge distance and fluid viscosity on jet performance in high-velocity waterjet cutting systems. Int J Adv Manuf Technol 40:332–341CrossRefGoogle Scholar
  249. 249.
    Vincent P, Pavol H, Sergej H, Hakan T, Jan V (2012) Vibration emission as a potential source of information for abrasive waterjet quality process control. Int J Adv Manuf Technol 61:285–294CrossRefGoogle Scholar
  250. 250.
    Kim J, Song J, Han S, Lee C (2012) Slotting of concrete and rock using an abrasive suspension waterjet system. KSCE J Civil Eng 16:571–578CrossRefGoogle Scholar
  251. 251.
    Gokhan A, Izzet K, Kerim A (2011) An investigation on surface roughness of granite machined by abrasive waterjet. Bull Mater Sci 34:985–992CrossRefGoogle Scholar
  252. 252.
    Libor MH, Bohumír S, Jiří K, Lucie G (2012) The model of product distortion in AWJ cutting. Int J Adv Manuf Technol 62:157–166CrossRefGoogle Scholar
  253. 253.
    Santhanakumar M, Adalarasan R, Rajmohan M (2015) Experimental modelling and analysis in abrasive waterjet cutting of ceramic tiles using Grey-based response surface methodology. Arab J Sci Eng 40:3299–3311CrossRefGoogle Scholar
  254. 254.
    Li W, Zhu H, Wang J, Yasser MA, Huang C (2013) An investigation into the radial-mode abrasive waterjet turning process on high tensile steels. Int J Mech Sci 77:365–376CrossRefGoogle Scholar
  255. 255.
    Gokhan A, Izzet K, Kerim A (2013) Prediction of the cut depth of granitic rocks machined by abrasive waterjet (AWJ). Rock Mech Rock Eng 46:1223–1235CrossRefGoogle Scholar
  256. 256.
    Gulay C, Can C (2012) An investigation on use of colemanite powder as abrasive in abrasive waterjet cutting (AWJC). J Mech Sci Technol 26:2371–2380CrossRefGoogle Scholar
  257. 257.
    Yue Z, Huang C, Zhu H, Wang J, Yao P, Liu Z (2014) Optimization of machining parameters in the abrasive waterjet turning of alumina ceramic based on the response surface methodology. Int J Adv Manuf Technol 71:2107–2114CrossRefGoogle Scholar
  258. 258.
    Zhang Y, Li C, Ji H, Yang X, Yang M, Jia D, Zhang X, Li R, Wang J (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tools Manuf 122:81–97CrossRefGoogle Scholar
  259. 259.
    Daniel K, Damian B, Piotr M (2017) The effect of traverse speed on kerf width in AWJ cutting of ceramic tiles. Procedia Eng. 192:469–473CrossRefGoogle Scholar
  260. 260.
    Ulas C, Ahmet H (2008) A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J Mater Processing Technol 202:574–582CrossRefGoogle Scholar
  261. 261.
    Farayibi PK, Murray JW, Huang L, Boud F, Kinnell PK, Clare AT (2014) Erosion resistance of laser clad Ti-6Al-4V/WC composite for waterjet tooling. J Mater Processing Technol 214:710–721CrossRefGoogle Scholar
  262. 262.
    Strnadel B, Hlavac LM, Gembalova L (2013) Effect of steel structure on the declination angle in AWJ cutting. Int J Mach Tools Manuf 64:12–19CrossRefGoogle Scholar
  263. 263.
    Ozcelik Y, Tercan AE, Yilmazkaya E, Ciccu R, Costa G (2011) A study of nozzle angle in stone surface treatment with water jets. Constr Build Mater 25:4271–4278CrossRefGoogle Scholar
  264. 264.
    Shanmugam DK, Wang J, Liu H (2008) Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique. Int J Mach Tools Manuf 48:1527–1534CrossRefGoogle Scholar
  265. 265.
    Naser H, Farbod A, Jan KS, Marcello P (2015) Effect of entrained air in abrasive waterjet micro-machining: reduction of channel width and waviness using slurry entrainment. Wear 344-345:99–109CrossRefGoogle Scholar
  266. 266.
    Zhao J, Zhang G, Xu Y, Wang R, Zhou W, Han L, Zhou Y (2017) Mechanism and effect of jet parameters on particle waterjet rock breaking. Powder Technol 313:231–244CrossRefGoogle Scholar
  267. 267.
    Azmir MA, Ahsan AK (2009) A study of abrasive water jet machining process on glass/epoxy composite laminate. J Mater Processing Technol 209:6168–6173CrossRefGoogle Scholar
  268. 268.
    Hou R, Huang C, Zhu H (2017) Experimental study on pulsation behavior of the ultrasonic vibration-assisted abrasive waterjet. Int J Adv Manuf Technol 91:3851–3859CrossRefGoogle Scholar
  269. 269.
    Hou R, Wang T, Lv Z, Tian Y (2018) Investigation of the pulsed waterjet flow field inside and outside of the nozzle excited by ultrasonic vibration. Int J Adv Manuf Technol 99:453–460CrossRefGoogle Scholar
  270. 270.
    Yu F, Wang J, Liu F (2012) Numerical simulation of single particle acceleration process by SPH coupled FEM for abrasive waterjet cutting. Int J Adv Manuf Technol 59:193–200CrossRefGoogle Scholar
  271. 271.
    Liu D, Zhu H, Huang C, Wang J, Yao P (2016) Prediction model of depth of penetration for alumina ceramics turned by abrasive waterjet—finite element method and experimental study. Int J Adv Manuf Technol 87:2673–2682CrossRefGoogle Scholar
  272. 272.
    Lv Z, Huang C, Zhu H, Wang J, Hou R (2016) A 3D simulation of the fluid field at the jet impinging zone in ultrasonic-assisted abrasive waterjet polishing. Int J Adv Manuf Technol 87:3091–3103CrossRefGoogle Scholar
  273. 273.
    Lv Z, Hou R, Tian Y, Huang C, Zhu H (2018) Numerical study on flow characteristics and impact erosion in ultrasonic assisted waterjet machining. Int J Adv Manuf Technol 98:373–383CrossRefGoogle Scholar
  274. 274.
    Liu C, Liu X, He Q, Zhang Y, Zhong RY (2018) An ultra-high-speed centrifugal grinding approach for thin-walled bearing rings. Int J Adv Manuf Technol 98:305–315CrossRefGoogle Scholar
  275. 275.
    Dominik W, Krzysztof T, Ireneusz M, Grzegorz D (2018) Estimation of the perforation force for polymer composite conveyor belts taking into consideration the shape of the piercing punch. Int J Adv Manuf Technol 98:2539–2561CrossRefGoogle Scholar
  276. 276.
    Miao X, Qiang Z, Wu M, Song L, Ye F (2018) Research on quality improvement of the cross section cut by abrasive water jet based on secondary cutting. Int J Adv Manuf Technol 97:71–80CrossRefGoogle Scholar
  277. 277.
    Miao X, Qiang Z, Wu M, Song L, Ye F (2018) The optimal cutting times of multipass abrasive water jet cutting. Int J Adv Manuf Technol 97:1779–1786CrossRefGoogle Scholar
  278. 278.
    Kushendarsyah S, Mebrahitom AG, Mohd AB, Mohd A (2018) Machining of biocompatible materials: a review. Int J Adv Manuf Technol 97:2255–2292CrossRefGoogle Scholar
  279. 279.
    Lehocká D, Klich FBJ, Foldyna J, Hloch S, Kepič J, Kovaľ K, Krejči L, Storkan Z (2018) Pulsating water jet erosion effect on a brass flat solid surface. Int J Adv Manuf Technol 97:1099–1112CrossRefGoogle Scholar
  280. 280.
    Andrzej P (2018) Experimental research into alternative abrasive material for the abrasive water-jet cutting of titanium. Int J Adv Manuf Technol 97:1529–1540CrossRefGoogle Scholar
  281. 281.
    Huang N, Yin C, Liang L, Hu J, Wu S (2018) Error compensation for machining of large thin-walled part with sculptured surface based on on-machine measurement. Int J Adv Manuf Technol 96:4345–4352CrossRefGoogle Scholar
  282. 282.
    Amer A, Dong R, Syed M, Igor S, Batool F (2018) An investigation of in-plane tensile properties of re-entrant chiral auxetic structure. Int J Adv Manuf Technol 96:2013–2029CrossRefGoogle Scholar
  283. 283.
    Shikha A, Vijay KP, Choudhury SK (2018) Effect of surface modifications by abrasive water jet machining and electrophoretic deposition on tribological characterisation of Ti6Al4V alloy. Int J Adv Manuf Technol 96:1769–1777CrossRefGoogle Scholar
  284. 284.
    Lv Z, Hou R, Tian Y, Huang C, Zhu H (2018) Investigation on flow field of ultrasonic-assisted abrasive waterjet using CFD with discrete phase model. Int J Adv Manuf Technol 96:963–972Google Scholar
  285. 285.
    Irina W, Ming M, Azwan IA, Lee C, Ahmad FM (2018) Experimental study and empirical analyses of abrasive waterjet machining for hybrid carbon/glass fiber-reinforced composites for improved surface quality. Int J Adv Manuf Technol 95:3809–3822CrossRefGoogle Scholar
  286. 286.
    Ján C, Sergej H, Jana P, Akash N, Miroslav G, Monika H (2018) Hydroabrasive disintegration of rotating Monel K-500 workpiece. Int J Adv Manuf Technol 96:981–1001Google Scholar
  287. 287.
    Feng D, Shi L, Guo C, Wang F, Chen Y (2018) Numerical and experimental study on the flow characteristics of abrasive slurry jet with polymer additives. Int J Adv Manuf Technol 95:3289–3299CrossRefGoogle Scholar
  288. 288.
    Qiang Z, Wu M, Miao X, Rupy S (2018) CFD research on particle movement and nozzle wear in the abrasive water jet cutting head. Int J Adv Manuf Technol 95:4091–4100CrossRefGoogle Scholar
  289. 289.
    Li L, Kim M, Lee S, Kim J, Kim H, Lee D (2018) Study on surface modification of aluminum 6061 by multiple ultrasonic impact treatments. Int J Adv Manuf Technol 96:1255–1264Google Scholar
  290. 290.
    Madhu S, Balasubramanian M (2018) Effect of swirling abrasives induced by a novel threaded nozzle in machining of CFRP composites. Int J Adv Manuf Technol 95:4175–4189CrossRefGoogle Scholar
  291. 291.
    Jonas H, Anders W, Johan B, Tomas B (2018) Surface integrity after post processing of EDM processed Inconel 718 shaft. Int J Adv Manuf Technol 95:2325–2337CrossRefGoogle Scholar
  292. 292.
    Wang F, Xu Q, Feng D, Guo C (2018) Experiment study on performance of abrasive slurry jet with or without high polymer in stainless steel machining. Int J Adv Manuf Technol 95:2449–2456CrossRefGoogle Scholar
  293. 293.
    Han Y, Zhang L, Guo M, Fan C, Liang F (2018) Tool paths generation strategy for polishing of freeform surface with physically uniform coverage. Int J Adv Manuf Technol 95:2125–2144CrossRefGoogle Scholar
  294. 294.
    Song J, Yao Y, Dong Y, Dong B (2018) Prediction of surface quality considering the influence of the curvature radius for polishing of a free-form surface based on local shapes. Int J Adv Manuf Technol 95:11–25CrossRefGoogle Scholar
  295. 295.
    Rivero A, Alberdi A, Artaza T, Mendia L, Lamikiz A (2018) Surface properties and fatigue failure analysis of alloy 718 surfaces milled by abrasive and plain waterjet. Int J Adv Manuf Technol 94:2929–2938CrossRefGoogle Scholar
  296. 296.
    Lv Z, Hou R, Zhu H, Wang J (2018) Investigation on erosion mechanism in ultrasonic assisted abrasive waterjet machining. Int J Adv Manuf Technol 94:3741–3755CrossRefGoogle Scholar
  297. 297.
    Irina W, Mai A, Lee CC, Mansor AF (2018) Kerf taper and delamination damage minimization of FRP hybrid composites under abrasive water-jet machining. Int J Adv Manuf Technol 94:1727–1744CrossRefGoogle Scholar
  298. 298.
    Akash N, Jiří Š, Petr H, Dagmar K, Ashish KS, Sergej H, Amit RD, Josef F, Michal Z (2018) Hybrid aluminium matrix composite AWJ turning using olivine and Barton garnet. Int J Adv Manuf Technol 94:2293–2300CrossRefGoogle Scholar
  299. 299.
    Liu S, Ji H, Han D, Guo C (2018) Experimental investigation and application on the cutting performance of cutting head for rock cutting assisted with multi-water jets. Int J Adv Manuf Technol 94:2715–2728CrossRefGoogle Scholar
  300. 300.
    Wang Q, Wu Y, Teruo B, Mitsuyoshi N, Tatsuya F (2018) Proposal of a tilted helical milling technique for high quality hole drilling of CFRP: kinetic analysis of hole formation and material removal. Int J Adv Manuf Technol 94:4221–4235CrossRefGoogle Scholar
  301. 301.
    Paweł S, Robert Ś (2018) The estimation of machining results and efficiency of the abrasive electro-discharge grinding process of Ti6Al4V titanium alloy using the high-frequency acoustic emission and force signals. Int J Adv Manuf Technol 94:1263–1282CrossRefGoogle Scholar
  302. 302.
    Salman P, Ibrahim D, Essam W, Amir R, Mihai N (2018) A numerical and experimental study to investigate convective heat transfer and associated cutting temperature distribution in single point turning. Int J Adv Manuf Technol 94:897–910CrossRefGoogle Scholar
  303. 303.
    Nath C, Rahman M (2008) Effect of machining parameters in ultrasonic vibration waterjet cutting. Int J Mach Tools Manuf 48:965–974CrossRefGoogle Scholar
  304. 304.
    Xiao M, Karube S, Soutome T, Sato K (2002) Analysis of chatter suppression in vibration waterjet cutting. Int J Mach Tools Manuf 42:1677–1685CrossRefGoogle Scholar
  305. 305.
    Geng D. X., Zhang D. Y., Xu Y. G., He F. T., Liu D. P., Duan Z. H. (2015) Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity, Ultrasonics 59: 128–137Google Scholar
  306. 306.
    Mitrofanov AV, Ahmed N, Babitsky VI, Silberschmidt VV (2005) Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718. J Mater Processing Technol s162–163:649–654CrossRefGoogle Scholar
  307. 307.
    Skelton RC (1969) Effect of ultrasonic vibration on the turning process. Int J Mach Tool D R 9:363–374CrossRefGoogle Scholar
  308. 308.
    Kim JD, Lee ES (1994) A study of the ultrasonic-vibration waterjet cutting of carbon-fiber reinforced plastics. J Mater Processing Technol 43:259–277CrossRefGoogle Scholar
  309. 309.
    Shamoto E, Moriwaki T (1994) Study on elliptical vibration waterjet cutting. CIRP Ann Manuf Technol 43:35–38CrossRefGoogle Scholar
  310. 310.
    Hew F. L., Timchenko V., Reizes J. A., Leonardi E. (2009) Numerical evaluation of the effectiveness of micro pulsating water jets for cooling of microchips. In: Proc. the ASME Micro/Nanoscale Heat Mass Transfer Int Conf, 2: 625–633Google Scholar
  311. 311.
    Klich J, Klichová D, Hlavácek P (2013) Effects of pulsating water jet on aluminium alloy with variously modifed surface. Tehnicki Vjesnik 24:341–345Google Scholar
  312. 312.
    Shamoto E, Moriwaki T (1999) Ultaprecision diamond cutting of hardened steel by applying elliptical vibration waterjet cutting. CIRP Annals – Manuf Technol 48:441–444CrossRefGoogle Scholar
  313. 313.
    Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32:153–172CrossRefGoogle Scholar
  314. 314.
    Zhou M, Hu LH (2015) Development of an innovative device for ultrasonic elliptical vibration waterjet cutting. Ultrasonics 60:76–81CrossRefGoogle Scholar
  315. 315.
    Suzuki N, Yokoi H, Shamoto E (2011) Micro/nano sculpturing of hardened steel by controlling vibration amplitude in elliptical vibration waterjet cutting. Precis Eng 35:44–50CrossRefGoogle Scholar
  316. 316.
    Liu K, Li XP, Rahman M, Liu XD (2004) A study of the cutting modes in the grooving of tungsten carbide. Int J Adv Manuf Technol 24:321–326CrossRefGoogle Scholar
  317. 317.
    Kim GD, Loh BG (2008) Characteristics of elliptical vibration waterjet cutting in micro-V grooving with variations in the elliptical cutting locus and excitation frequency. J Micromech Microeng 18:025002CrossRefGoogle Scholar
  318. 318.
    Ohnishi O., Onikura H., Min S. K., Aziz M., Tsuruoka S. (2008) Effect of ultrasonic vibration on micro grooving. Memoirs of the Faculty of Engineering, Kyushu University, 68: 1–9Google Scholar
  319. 319.
    Bourne K. A., Kapoor S. G., DeVor R. E. (2011) Study of the mechanics of the microgroove cutting process. Proc. the ASME 2011 Int Manuf Sci Eng ConfGoogle Scholar
  320. 320.
    Lu H, Lee D, Kim JG, Kim SY (2014) Modeling and machining evaluation of micro-structure fabrication by fast tool servo-based diamond machining. Precis Eng 38:212–216CrossRefGoogle Scholar
  321. 321.
    Shamoto E, Suzuki N, Hino R (2008) Analysis of 3D elliptical vibration waterjet cutting with thin shear plane model. CIRP Annals – Manuf Technol 57:57–60CrossRefGoogle Scholar
  322. 322.
    Zhang XQ, Kumar AS, Rahman M, Nath C, Liu K (2012) An analytical force model for orthogonal elliptical vibration waterjet cutting technique. J Manuf Process 14:378–387CrossRefGoogle Scholar
  323. 323.
    Zhang XQ, Kumar AS, Rahman M, Nath C, Liu K (2013) Modeling of the effect of tool edge radius on surface generation in elliptical vibration waterjet cutting. Int J Adv Manuf Technol 65:35–42CrossRefGoogle Scholar
  324. 324.
    Guo P, Ehmann KP (2013) Development of a tertiary motion generator for elliptical vibration texturing. Precis Eng 37:364–371CrossRefGoogle Scholar
  325. 325.
    Guo P, Ehmann KP (2013) An analysis of the surface generation mechanics of the elliptical vibration texturing process. Int J Mach Tools Manuf 64:85–95CrossRefGoogle Scholar
  326. 326.
    Zhang C, Ehmann KP, Li YG (2015) Analysis of cutting forces in the ultrasonic elliptical vibration-assisted micro-groove turning process. Int J Adv Manuf Technol 78:139–152CrossRefGoogle Scholar
  327. 327.
    Nebeker E. B., Rodriguez S. E. (1976) Percussive water jets for rock cutting. In: Proc. the 3rd Int Sym. on Jet Cutting Technology, BHRA, B1-1–B1-9Google Scholar
  328. 328.
    Johnson Jr. V. E., Conn A. F. (1982) Self-resonating cavitating jets. In: Proc. the 6th Int Sym. on Jet Cutting Technology, BHRA, Paper A1, 1–25Google Scholar
  329. 329.
    Chahine G. L., Conn A. F., Johnson Jr. V. E., Frederick G. S. (1983) Cleaning and cutting with self-resonating pulsed water jets. In: Proc. the 2nd U.S. Water Jet Symposium, WJTA, 167–173Google Scholar
  330. 330.
    Gao C., Zhao L., Liu X., Huang X. (2012) Experiment research on erosion of self-excited inspired pulsatile jet in submerged conditions. J. Drain. Irrigation Mach Eng. 30:53–56 +63Google Scholar
  331. 331.
    Puchala RJ, Vijay MM (1984) Study of an ultrasonically generated cavitating or interrupted jet: aspects of design. In: Proc. the 7th Int Sym. Jet Cutting Technology, BHRA B2:69–82Google Scholar
  332. 332.
    Vijay M. M., Ultrasonically generated cavitating or interrupted jet [P], U.S. Patent 5, 154, 347Google Scholar
  333. 333.
    Foldyna J., Švehla B. (2008) Method of generation of pressure pulsations and apparatus for implementation of this method [P]. Czech patent 299412Google Scholar
  334. 334.
    Foldyna J, Sitek L, Švehla B, Švehla S (2004) Utilization of ultrasound to enhance high-speed water jet effects. Ultrason Sonochem 11:131CrossRefGoogle Scholar
  335. 335.
    Ríha Z, Foldyna J (2012) Ultrasonic pulsations of pressure in a water jet cutting tool. Tehnical Gaz 19:487–491Google Scholar
  336. 336.
    Vijay M. M., Remisz J., Foldyna J., Grattan B. P. E. (1994) Preweakening of hard rocks with ultrasonically modulated high speed pulsed jets. In: Preceedings of the 12th Int Conf on Jet Cutting TechnologyGoogle Scholar
  337. 337.
    Sitek L, Foldyna J, Martinec P, Šcucka J, Bodnárová L, Hela R (2011) Use of pulsating water jet technology for removal of concrete in repair of concrete structures. Baltic J Road Bridge Eng 6:235–242CrossRefGoogle Scholar
  338. 338.
    Dehkhoda S, Hood M (2013) An experimental study of surface and sub-surface damage in pulsed waterjet breakage of rocks. Int J Rock Mech Mining Sci 63:138–147CrossRefGoogle Scholar
  339. 339.
    Bortolussi A. (2013) Ornamental stones surface finishing by pulsating jet: a project for an industrial application, Water Jet 2013–Research, Development, Applications, 17–24Google Scholar
  340. 340.
    Hnizdil M., Raudensky M. (2010) Descaling by pulsating water jet, METAL 2010—19th Int Conf on Metallurgy and Materials, 209–213Google Scholar
  341. 341.
    Sharma NC, Lyle DM, Qaqish JG, Galustians J, Schuller R (2008) The effect of a dental water jet with orthodontic tip on plaque and bleeding in adolescent patients with fixed orthodontic appliances. Am J Orthod Dentofac 133:565–571CrossRefGoogle Scholar
  342. 342.
    Sergej H, Josef F, Libor S (2013) Disintegration of bone cement by continuous and pulsating water jet. Tehnicki Vjesnik 20:593–598Google Scholar
  343. 343.
    Stutz J, Krahl D (2009) Water jet-assisted liposuction for patients with lipoedema: histologic and immunohistologic analysis of the aspirates of 30 lipoedema patients. Aesthet Plast Surg 33:153–162CrossRefGoogle Scholar
  344. 344.
    Michalik P, Zajac J, Hatala M, Mital D, Fecova V (2014) Monitoring surface roughness of thin-welled components from steel C45 machining down and up milling. Measurement 58:416–428CrossRefGoogle Scholar
  345. 345.
    Foldyna J, Sitek L, Šcucka J, Martinec P, Valícek J, Páleníková K (2009) Effects of pulsating water jet impact on aluminium surface. J Mater Processing Technol 209:6174–6180CrossRefGoogle Scholar
  346. 346.
    Foldyna J, Klich J, Hlavacek P, Zelenak M, Scucka J (2012) Erosion of metals by pulsating water jet. Tehnicki Vjesnik 19:381–386Google Scholar
  347. 347.
    Lehocka D, Klich J, Foldyna J, Hloch S, Krolczyk JB, Carach J (2016) Copper alloys disintegration using pulsating water jet. Measurement 82:375–383CrossRefGoogle Scholar
  348. 348.
    Lehocka D., Klich J., Foldyna J., Hloch S., Hvizdoš P., Fides M. (2016) Surface integrity evaluation of brass CW614N after impact of acoustically excited pulsating water jet. Int Conf on manufacturing engineering and materials, Int Conf on Management in Emerging Markets 2016, in: Procedia Eng, 149: 236–244Google Scholar
  349. 349.
    Zhang C, Guo P, Ehmann KF, Li Y (2016) Effects of ultrasonic vibrations in micro-groove turning. Ultrasonics 67:30–40CrossRefGoogle Scholar
  350. 350.
    Wang X, Han P, Marco G, Ehmann K (2017) Modeling of machined depth in laser surface texturing of medical needles. Precis Eng 47:10–18CrossRefGoogle Scholar
  351. 351.
    Debaprasanna P, Siba SM, Jambeswar S, Layatitdev D (2013) A hybrid approach for multi-response optimization of non-conventional machining on AlSiCp MMC. Measurement 46:3581–3592CrossRefGoogle Scholar
  352. 352.
    Lehocká D, Klichová D, Foldyna J, Hloch S, Hvizdoš P, Fides M, Botko F (2017) Comparison of the influence of acoustically enhanced pulsating water jet on selected surface integrity characteristics of CW004A copper and CW614N brass. Measurement 110:230–238CrossRefGoogle Scholar
  353. 353.
    Qi H, Wen D, Lu C, Li G (2016) Numerical and experimental study on ultrasonic vibration-assisted micro-channeling of glasses using an abrasive slurry jet. Int J Mech Sci 110:94–107CrossRefGoogle Scholar
  354. 354.
    Tangwarodomnukun V, Likhitangsuwat P, Tevinpibanphan O, Dumkum C (2015) Laser ablation of titanium alloy under a thin and flowing water layer. Int J Mach Tools Manuf 89:14–28CrossRefGoogle Scholar
  355. 355.
    Marko J, Henri O, Andrej L, Izidor S, Pavel D, Joško V (2016) Measuring the water temperature changes in ice abrasive water jet prototype. Procedia Eng. 149:163–168CrossRefGoogle Scholar
  356. 356.
    Suvradip M, Yuvraj KM, Subhransu R, Shailesh K, Dinesh KS, Ashish KN (2013) Development and parametric study of a waterjet assisted underwater laser cutting process. Int J Mach Tools Manuf 68:48–55CrossRefGoogle Scholar
  357. 357.
    Zhua H, Wang J, Yao P, Huang C (2017) Heat transfer and material ablation in hybrid laser-waterjet micro grooving of single crystalline germanium. Int J Mach Tools Manuf 116:25–39CrossRefGoogle Scholar
  358. 358.
    The Laser MicroJet® Technology (2017) microjet.html. Accessed 20 Dec 2017
  359. 359.
    Liang Z, Zhang C, Hu Y (2011) Study of fuzzy relational degrees between turbulence features and topography construction. Int J Adv Comput Technol 3:15–22Google Scholar
  360. 360.
    Liang ZW, Ye BY (2012) Drug appearance quality selecting method based on image probability density recognition. J Convergence Info Technol 7:37–43CrossRefGoogle Scholar
  361. 361.
    Liang ZW, Ye BY (2012) Assessment of surface fitting algorithm’s influence on integrated chip topography characteristics. J Convergence Info Technol 7:131–139Google Scholar
  362. 362.
    Liang ZW, Ye BY (2014) A new vehicle image dynamic tracking approach. Sensors Transducers 165:53–60Google Scholar
  363. 363.
    Zhang Z, Yao P, Zhang Z, Xue D, Wang C, Huang C, Zhu H (2017) A novel technique for dressing metal-bonded diamond grinding wheel with abrasive waterjet and touch truing. Int J Adv Manuf Technol 93:3063–3073CrossRefGoogle Scholar
  364. 364.
    Wang J, Sun L, Jia Z (2017) Research on electrochemical discharge-assisted diamond wire cutting of insulating ceramics. Int J Adv Manuf Technol 93:3043–3051CrossRefGoogle Scholar
  365. 365.
    Sedighi M, Shamsi M (2017) A new approach in producing metal bellows by local arc heating: a parametric study. Int J Adv Manuf Technol 93:3211–3219CrossRefGoogle Scholar
  366. 366.
    Wang S, Zhang S, Wu Y, Yang F (2017) Exploring kerf cut by abrasive waterjet. Int J Adv Manuf Technol 93:2013–2020CrossRefGoogle Scholar
  367. 367.
    Van HB, Patrick G, Tarek S, Guillaume C, Walter R (2017) A new cutting depth model with rapid calibration in abrasive water jet machining of titanium alloy. Int J Adv Manuf Technol 93:1499–1512CrossRefGoogle Scholar
  368. 368.
    Ramírez LA, Muñoz ND, Palomar PM, Romero RMA, Gonzalez TJ (2017) Heat removal analysis on steel billets and slabs produced by continuous casting using numerical simulation. Int J Adv Manuf Technol 93:1545–1565CrossRefGoogle Scholar
  369. 369.
    Miao X, Wu M, Qiang Z, Wang Q, Miao X (2017) Study on optimization of a simulation method for abrasive water jet machining. Int J Adv Manuf Technol 93:587–593CrossRefGoogle Scholar
  370. 370.
    Zhang L, Han Y, Fan C, Tang Y, Song X (2017) Polishing path planning for physically uniform overlap of polishing ribbons on freeform surface. Int J Adv Manuf Technol 92:4525–4541CrossRefGoogle Scholar
  371. 371.
    Adalarasan R, Santhanakumar M, Thileepan S (2017) Selection of optimal machining parameters in pulsed CO2 laser cutting of Al6061/Al2O3 composite using Taguchi-based response surface methodology (T-RSM). Int J Adv Manuf Technol 93:305–317CrossRefGoogle Scholar
  372. 372.
    Viboon T, Taweeporn W (2017) Evolution of milled cavity in the multiple laser scans of titanium alloy under a flowing water layer. Int J Adv Manuf Technol 92:293–302CrossRefGoogle Scholar
  373. 373.
    Srinivasu DS, Venkaiah N (2017) Minimum zone evaluation of roundness using hybrid global search approach. Int J Adv Manuf Technol 92:2743–2754CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Xiaochu Liu
    • 1
    • 2
    • 3
  • Zhongwei Liang
    • 1
    • 2
    • 3
  • Guilin Wen
    • 2
  • Xuefeng Yuan
    • 3
  1. 1.Guangdong Engineering and Technology Research Centre for Strengthen Grinding and High-Performance Micro\Nano machiningGuangzhou UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Mechanical and Electrical EngineeringGuangzhou UniversityGuangzhouPeople’s Republic of China
  3. 3.Advanced Institute of Engineering Science for Intelligent ManufacturingGuangzhou UniversityGuangzhouPeople’s Republic of China

Personalised recommendations