Advertisement

Simulated and experimental studies of laser-MIG hybrid welding for plate-pipe dissimilar steel

  • Xiaohong ZhanEmail author
  • Youfa Wu
  • Yue Kang
  • Xu Liu
  • Xiaodong Chen
ORIGINAL ARTICLE
  • 44 Downloads

Abstract

Laser-MIG hybrid welding (LMHW) has not been extensively applied in welding of plate-pipe dissimilar steel with thick-walled because of the complex welding process requirements. In this study, numerical simulation and experimental studies of LMHW with different parameters of 25CrMo4 steel and 33MnCrB5-2 steel are presented. A 3D finite element model with coupled thermal-structural is established for analyzing the effects of welding parameters on the posted-weld thermal field, residual stress, and deformation distribution by using combined ellipsoid-Gaussian heat source model. Comparison of the calculated and experimental results suggested that the LMHW process is characterized well by the combined heat source model. Additionally, the inter-layer cooling time is determined by the amount of heat input, which also affects the magnitude and distribution of residual stress. Residual stress and deformation are controlled within the adaptable range. But, the component cannot be penetrated when laser power of backing weld P is 6000 W and welding current I is 282 A.

Keywords

Simulation Laser-MIG hybrid welding Dissimilar steel Plate-pipe joint 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the project from the Yangzhou Dongsheng Automotive Co., Ltd. (BE2015124) and the innovation fund for Commercial Aircraft Corporation of China Ltd. (COMAC-SFGS-2016-33317).

References

  1. 1.
    Abid M, Siddique M (2005) Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-flange joint. Int J Pres Ves Pip 82(11):860–871CrossRefGoogle Scholar
  2. 2.
    Sarafan S, Wanjara P, Champliaud H, Thibault D (2015) Characteristics of an autogenous single pass electron beam weld in thick gage CA6NM steel. Int J Adv Manuf Technol 78(9–12):1523–1535CrossRefGoogle Scholar
  3. 3.
    Bertini L, Frendo F, Marulo G (2016) Effects of plate stiffness on the fatigue resistance and failure location of pipe-to-plate welded joints under bending. Int J Fatigue 90:78–86CrossRefGoogle Scholar
  4. 4.
    Xu WH, Lin SB, Fan CL, Yang CL (2014) Evaluation on microstructure and mechanical properties of high-strength low-alloy steel joints with oscillating arc narrow gap GMA welding. Int J Adv Manuf Technol 75(9–12):1439–1446CrossRefGoogle Scholar
  5. 5.
    Li SC, Chen GY, Zhou C (2015) Effects of welding parameters on weld geometry during high-power laser welding of thick plate. Int J Adv Manuf Technol 79(1–4):1–6Google Scholar
  6. 6.
    Nandan R, Roy GG, Lienert TJ, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55(3):883–895CrossRefGoogle Scholar
  7. 7.
    Warinsiriruk E, Hashida K, Yamamoto M, Shinozaki K, Kadoi K (2015) Welding phenomena during vertical welding on thick steel plate using hot wire laser welding method. Q J Jpn Weld Soc 33(2):143–147CrossRefGoogle Scholar
  8. 8.
    Ramana PV, Reddy GM, Mohandas T, Gupta AV (2010) Microstructure and residual stress distribution of similar and dissimilar electron beam welds—Maraging steel to medium alloy medium carbon steel. Mater Des 31(2):749–760CrossRefGoogle Scholar
  9. 9.
    Acherjee B (2018) Hybrid laser arc welding: state-of-art review. Opt Laser Technol 99:60–71CrossRefGoogle Scholar
  10. 10.
    Liu S, Zhang F, Dong S, Zhang H, Liu F (2018) Characteristics analysis of droplet transfer in laser-MAG hybrid welding process. Int J Heat Mass Transf 121:805–811CrossRefGoogle Scholar
  11. 11.
    Wu SC, Hu YN, Duan H, Yu C, Jiao HS (2016) On the fatigue performance of laser hybrid welded high Zn 7000 alloys for next generation railway components. Int J Fatigue 91:1–10CrossRefGoogle Scholar
  12. 12.
    Zhan XH, Zhang D, Wei YH, Wang YH (2017) Research on the microstructure and properties of laser-MIG hybrid welded joint of invar alloy. Opt Laser Technol 97:124–136CrossRefGoogle Scholar
  13. 13.
    Guen EL, Fabbro R, Carin M, Coste F, Masson PL (2011) Analysis of hybrid Nd:Yag laser-MAG arc welding processes. Opt Laser Technol 43(7):1155–1166CrossRefzbMATHGoogle Scholar
  14. 14.
    Wahba M, Mizutani M, Katayama S (2015) Hybrid welding with fiber laser and CO2 gas shielded arc. J Mater Process Technol 221:146–153CrossRefGoogle Scholar
  15. 15.
    Jiang Z, Hua XM, Huang LJ, Wu DS, Li F, Zhang YL (2018) Double-sided hybrid laser-MIG welding plus MIG welding of 30-mm-thick aluminium alloy. Int J Adv Manuf Technol 97(1–4):903–913CrossRefGoogle Scholar
  16. 16.
    Jokinen T, Jernström P, Karhu M, Vanttaja I, Kujanpää V (2003) Optimization of parameters in hybrid welding of aluminum alloy. Proc SPIE 17(4):347–348Google Scholar
  17. 17.
    Lei ZL, Ni LC, Li BW, Zhang KZ (2017) Numerical simulation of droplet shapes in laser-MIG hybrid welding. Opt Laser Technol 88:1–10CrossRefGoogle Scholar
  18. 18.
    Piekarska W, Kubiak M, Vaško M (2017) Numerical estimation of the shape of weld and heat affected zone in laser-arc hybrid welded joints. Procedia Eng 177:114–120CrossRefGoogle Scholar
  19. 19.
    Bendaoud I, Matteï S, Cicala E, Tomashchuk I, Andrzejewski H, Sallamand P, Mathieu A, Bouchaud F (2014) The numerical simulation of heat transfer during a hybrid laser-MIG welding using equivalent heat source approach. Opt Laser Technol 56(1):334–342CrossRefGoogle Scholar
  20. 20.
    Kim YC, Hirohata M, Murakami M, Inose K (2014) Effects of heat input ratio of laser–arc hybrid welding on welding distortion and residual stress. Weld Int 29(4):245–253CrossRefGoogle Scholar
  21. 21.
    Mathieu A, Shabadi R, Deschamps A, Suery M, Matteï S, Grevey D, Cicala E (2007) Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire). Opt Laser Technol 39(3):652–661CrossRefGoogle Scholar
  22. 22.
    Wang S, Qin G, Su Y (2013) Laser-MIG arc hybrid brazing-fusion welding of Al alloy to galvanized steel with different filler metals. Acta Metall Sin 26(2):177–182CrossRefGoogle Scholar
  23. 23.
    Gao M, Chen C, Mei SW, Wang L, Zeng XY (2014) Parameter optimization and mechanism of laser-arc hybrid welding of dissimilar Al alloy and stainless steel. Int J Adv Manuf Technol 74(1–4):199–208CrossRefGoogle Scholar
  24. 24.
    Meng XM, Qin GL, Su YH, Fu BL, Ji Y (2015) Numerical simulation of large spot laser+MIG arc brazing-fusion welding of Al alloy to galvanized steel. J Mater Process Technol 222:307–314CrossRefGoogle Scholar
  25. 25.
    Carbucicchio M, Palombarini G, Ciprian R, Tosto S, Rateo M, Sambogna G (2009) Interfacial microstructure and properties of dissimilar steels joined by high energy beam melting processes. Hyperfine Interact 191(1–3):143–150CrossRefGoogle Scholar
  26. 26.
    Khalifeh AR, Dehghan A, Hajjari E (2013) Dissimilar joining of AISI 304L/St37 steels by TIG welding process. Acta Metall Sin 26(6):721–727CrossRefGoogle Scholar
  27. 27.
    Abdel RMS, Abdel RNA, El KMR (2014) Effect of heat input on the microstructure and properties of dissimilar weld joint between Incoloy 28 and superaustenitic stainless steel. Acta Metall Sin 27(2):259–266CrossRefGoogle Scholar
  28. 28.
    Hajiannia I, Shamanian M, Kasiri M (2013) Microstructure and mechanical properties of AISI 347 stainless steel/A335 low alloy steel dissimilar joint produced by gas tungsten arc welding. Mater Design 50(17):566–573CrossRefGoogle Scholar
  29. 29.
    Chen YB, Lei ZL, Li LQ, Wu L (2006) Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process. Chin Opt Lett 4(1):33–35Google Scholar
  30. 30.
    Ruan GX, Wu CS, Qin GL, Wang XY, Lin SY (2008) Numerical simulation of weld formation in laser plus GMAW hybrid welding. Acta Metall Sin 44(6):641–646Google Scholar
  31. 31.
    Xu GX, Wu CS, Qin GL, Wang XY, Lin SY (2011) Adaptive volumetric heat source models for laser beam and laser pulsed GMAW hybrid welding processes. Int J Adv Manuf Tech 57(1–4):245–255CrossRefGoogle Scholar
  32. 32.
    Chang WS, Na SJ (2002) A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining. J Mater Process Tech 120(1):208–214CrossRefGoogle Scholar
  33. 33.
    Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15(2):299–305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Xiaohong Zhan
    • 1
    Email author
  • Youfa Wu
    • 1
  • Yue Kang
    • 1
  • Xu Liu
    • 2
  • Xiaodong Chen
    • 2
  1. 1.College of Material Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Yangzhou Dongsheng Automotive Co., LtdYangzhouChina

Personalised recommendations