Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer

  • Shilpesh R. Rajpurohit
  • Harshit K. DaveEmail author


The application of the fused filament fabrication (FFF) or fused deposition modeling (FDM) may be limited due to relatively poor mechanical properties of the 3D-printed components. The present experimental investigation quantifies the effect of the three process parameters viz. raster angle, layer height, and raster width on the tensile properties of the FFF-printed PLA, using an open-source 3D printer. The mean effect of each process parameters on the tensile properties and the effect of the interaction are discussed. From the result analysis, it is found that raster angle, raster width, and interaction of layer height and raster width have a significant influence on the tensile properties. Tensile test results show that parts printed at 0° raster angle exhibit higher tensile strength as compared to those with 90° raster angle. Furthermore, fractography was performed on the tensile specimen using a high-precision measuring microscope to determine the effect of process variables on modes of failure. A close relationship between the raster angle and failure mode has been observed and critically discussed.


Fused filament fabrication (FFF) Fused deposition modeling (FDM) Polylactic acid (PLA) Raster angle Layer height Raster width Tensile strength 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83(1–4):389–405CrossRefGoogle Scholar
  2. 2.
    Garg A, Bhattacharya A, Batish A (2017) Chemical vapor treatment of ABS parts built by FDM: analysis of surface finish and mechanical strength. Int J Adv Manuf Technol 89(5–8):2175–2191CrossRefGoogle Scholar
  3. 3.
    Jin YA, He Y, Xue GH, Fu JZ (2015) A parallel-based path generation method for fused deposition modeling. Int J Adv Manuf Technol 77:927–937CrossRefGoogle Scholar
  4. 4.
    Kuo CC, Chen CM, Chang SX (2017) Polishing mechanism for ABS parts fabricated by additive manufacturing. Int J Adv Manuf Technol 91(5–8):1473–1479CrossRefGoogle Scholar
  5. 5.
    Pivsa-Art W, Chaiyasat A, Pivsa-Art S, Yamane H, Ohara H (2013) Preparation of polymer blends between poly (lactic acid) and poly (butylene adipate-co-terephthalate) and biodegradable polymers as compatibilizers. Energy Procedia 34:549–554CrossRefGoogle Scholar
  6. 6.
    Zhang J, Wang S, Qiao Y, Li Q (2016) Effect of morphology designing on the structure and properties of PLA/PEG/ABS blends. Colloid Polym Sci 294(11):1779–1787CrossRefGoogle Scholar
  7. 7.
    Choe IJ, Lee JH, Yu JH, Yoon JS (2014) Mechanical properties of acrylonitrile–butadiene–styrene copolymer/poly (l-lactic acid) blends and their composites. J Appl Polym Sci 131(11):40329.1–40329.8CrossRefGoogle Scholar
  8. 8.
    Jo MY, Ryu YJ, Ko JH, Yoon JS (2012) Effects of compatibilizers on the mechanical properties of ABS/PLA composites. J Appl Polym Sci 125(S2):E231–E238CrossRefGoogle Scholar
  9. 9.
    Liu X, Zhang M, Li S, Si L, Peng J, Hu Y (2017) Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. Int J Adv Manuf Technol 89(5–8):2387–2397CrossRefGoogle Scholar
  10. 10.
    Cwikła G, Grabowik C, Kalinowski K, Paprocka I, Ociepka P (2017) The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conf Ser Mater Sci Eng 227(1):012033CrossRefGoogle Scholar
  11. 11.
    Lanzotti A, Grasso M, Staiano G, Martorelli M (2015) The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp J 21(5):604–617CrossRefGoogle Scholar
  12. 12.
    Melenka GW, Schofield JS, Dawson MR, Carey JP (2015) Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer. Rapid Prototyp J 21(5):618–627CrossRefGoogle Scholar
  13. 13.
    Durgun I, Ertan R (2014) Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp J 20(3):228–235CrossRefGoogle Scholar
  14. 14.
    Riddick JC, Haile MA, Von Wahlde R, Cole DP, Bamiduro O, Johnson TE (2016) Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling. Addit Manuf 11:49–59CrossRefGoogle Scholar
  15. 15.
    Dawoud M, Taha I, Ebeid SJ (2016) Mechanical behaviour of ABS: an experimental study using FDM and injection moulding techniques. J Manuf Process 21:39–45CrossRefGoogle Scholar
  16. 16.
    Hill N, Haghi M (2014) Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate. Rapid Prototyp J 20(3):221–227CrossRefGoogle Scholar
  17. 17.
    Ziemian S, Okwara M, Ziemian CW (2015) Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp J 21(3):270–278CrossRefGoogle Scholar
  18. 18.
    Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8(4):248–257CrossRefGoogle Scholar
  19. 19.
    Huang B, Singamneni S (2015) Raster angle mechanics in fused deposition modelling. J Compos Mater 49(3):363–383CrossRefGoogle Scholar
  20. 20.
    Es Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA (2000) Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Process 15(1):107–122CrossRefGoogle Scholar
  21. 21.
    Vega V, Clements J, Lam T, Abad A, Fritz B, Ula N, Es-Said OS (2011) The effect of layer orientation on the mechanical properties and microstructure of a polymer. J Mater Eng Perform 20(6):978–988CrossRefGoogle Scholar
  22. 22.
    Chockalingam K, Jawahar N, Praveen J (2016) Enhancement of anisotropic strength of fused deposited ABS parts by genetic algorithm. Mater Manuf Process 31(15):2001–2010CrossRefGoogle Scholar
  23. 23.
    Cantrell JT, Rohde S, Damiani D, Gurnani R, DiSandro L, Anton J, Young A, Jerez A, Steinbach D, Kroese C, Ifju PG (2017) Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp J 23(4):811–824CrossRefGoogle Scholar
  24. 24.
    Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31(1):287–295CrossRefGoogle Scholar
  25. 25.
    Casavola C, Cazzato A, Moramarco V, Pappalettere C (2016) Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater Des 90:453–458CrossRefGoogle Scholar
  26. 26.
    Zaldivar RJ, Witkin DB, McLouth T, Patel DN, Schmitt K, Nokes JP (2017) Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-printed ULTEM® 9085 material. Addit Manuf 13:71–80CrossRefGoogle Scholar
  27. 27.
    Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246CrossRefGoogle Scholar
  28. 28.
    Rankouhi B, Javadpour S, Delfanian F, Letcher T (2016) Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J Fail Anal Prev 16(3):467–481CrossRefGoogle Scholar
  29. 29.
    Wittbrodt B, Pearce JM (2015) The effects of PLA color on material properties of 3-D printed components. Addit Manuf 8:110–116CrossRefGoogle Scholar
  30. 30.
    Tanikella NG, Wittbrodt B, Pearce JM (2017) Tensile strength of commercial polymer materials for fused filament fabrication 3D printing. Addit Manuf 15:40–47CrossRefGoogle Scholar
  31. 31.
    Perez ART, Roberson DA, Wicker RB (2014) Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J Fail Anal Prev 14(3):343–353CrossRefGoogle Scholar
  32. 32.
    Li L, Sun Q, Bellehumeur C, Gu P (2002) Composite modeling and analysis for fabrication of FDM prototypes with locally controlled properties. J Manuf Process 4(2):129–141CrossRefGoogle Scholar
  33. 33.
    Rajpurohit SR, Dave HK (2016) Parametric studies on quality of PLA parts produced using fused deposition modelling. In: Proceeding: 6th International & 27th All India Manufacturing Technology, Design and Research Conference (AIMTDR-2016), pp 59–62Google Scholar
  34. 34.
    Taguchi G, Chowdhury S, Wu Y (2005) Taguchi’s quality engineering handbook. Wiley, Hoboken, p 1736zbMATHGoogle Scholar
  35. 35.
    Torres J, Cole M, Owji A, DeMastry Z, Gordon AP (2016) An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Prototyp J 22(2):387–404CrossRefGoogle Scholar
  36. 36.
    Croccolo D, De Agostinis M, Olmi G (2013) Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Comput Mater Sci 79:506–518CrossRefGoogle Scholar
  37. 37.
    Coogan TJ, Kazmer DO (2017) Bond and part strength in fused deposition modeling. Rapid Prototyp J 23(2):414–422CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations