Advertisement

Uncertainty in manufacturing of lightweight products in composite laminate: part 1—numerical approach

  • Wilma PoliniEmail author
  • Andrea Corrado
ORIGINAL ARTICLE
  • 29 Downloads

Abstract

In manufacturing industry, products are obtained by joining/assembling together parts or sub-assemblies. The geometric deviation of a single part, due to inherent process variability, propagates through the process chain to the final assembly and, therefore, affects the quality and the functional compliance of the final product. According to the literature, up to 70% of design changes or failures are caused by the inaccurate prediction of the geometric deviations of the final products. Therefore, the ability to predict the geometric variation of a final product is a major challenge in many manufacturing sectors. There are no consolidated methodologies in the literature to predict the variability (uncertainty) of products constituted by compliant parts of any material during the design stage, thus the relevant need for a solution. This work uses a numerical tool to predict the uncertainties resulting in manufacturing products constituted by compliant lightweight parts in composite material joined by means of an adhesive. To compare and validate the numerical tool, an experimental activity was carried out. The obtained results show that the numerical tool allows to reproduce the mean trend of the geometrical deviations of the assembly.

Keywords

Variation analysis Compliant part Composite material Adhesive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Special thanks to Federico and Walter A.

Funding information

This work was carried out with the funding of the Italian M.I.U.R. (Ministry of Instruction, University and Technological Research).

References

  1. 1.
    Franciosa P, Gerbino S, Patalano S (2013) A computer-aided tool to quickly analyse variabilities in flexible assemblies in different design scenarios. Int J Product Dev 18:112–133.  https://doi.org/10.1504/IJPD.2013.053496 CrossRefGoogle Scholar
  2. 2.
    Chen H, Jin S, Li Z, Lai X (2014) A comprehensive study of three dimensional tolerance analysis methods. Comput Aided Des 53:1–13.  https://doi.org/10.1016/j.cad.2014.02.014 CrossRefGoogle Scholar
  3. 3.
    Polini W (2011) Geometric tolerance analysis. In: Colosimo BM, Senin N (eds) Geometric tolerances: impact on product design. Quality Inspection and Statistical Process Monitoring, Springer London, pp 39–68.  https://doi.org/10.1007/978-1-84996-311-4_2 CrossRefGoogle Scholar
  4. 4.
    Corrado A, Polini W (2016) Manufacturing signature in variational and vector-loop models for tolerance analysis of rigid parts. Int J Adv Manuf Technol 88:1–9.  https://doi.org/10.1007/s00170-016-8947-z CrossRefGoogle Scholar
  5. 5.
    Corrado A, Polini W (2017) Manufacturing signature in jacobian and torsor models for tolerance analysis of rigid parts. Robot Comput Integr Manuf 46:15–24.  https://doi.org/10.1016/j.rcim.2016.11.004 CrossRefGoogle Scholar
  6. 6.
    Ceglarek D, Huang W, Zhou S, Ding Y, Kumar R, Zhou Y (2004) Time-Based Competition in Multistage Manufacturing: Stream-of-Variation Analysis (SOVA) Methodology—Review. Int J Flex Manuf Syst 16:11–44.  https://doi.org/10.1023/B:FLEX.0000039171.25141.a4 CrossRefzbMATHGoogle Scholar
  7. 7.
    Mortensen AJ (2002) An integrated methodology for statistical tolerance analysis of flexible assemblies. Brigham Young University. Department of Mechanical Engineering,Google Scholar
  8. 8.
    Liu SC, Hu SJ (1997) Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods. J Manuf Sci Eng 119:368–374.  https://doi.org/10.1115/1.2831115 CrossRefGoogle Scholar
  9. 9.
    Hu M, Lin Z, Lai X, Ni J (2001) Simulation and analysis of assembly processes considering compliant, non-ideal parts and tooling variations. Int J Mach Tools Manuf 41:2233–2243.  https://doi.org/10.1016/S0890-6955(01)00044-X CrossRefGoogle Scholar
  10. 10.
    Camelio J, Hu SJ, Ceglarek D (2004a) Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts. J Mech Des 125:673–681.  https://doi.org/10.1115/1.1631574 CrossRefGoogle Scholar
  11. 11.
    Dong C, Kang L (2012) Deformation and stress of a composite–metal assembly. Int J Adv Manuf Technol 61:1035–1042.  https://doi.org/10.1007/s00170-011-3757-9 CrossRefGoogle Scholar
  12. 12.
    Jareteg C, Wärmefjord K, Söderberg R, Lindkvist L, Carlson J, Cromvik C, Edelvik F (2014b) Variation simulation for composite parts and assemblies including variation in fiber orientation and thickness. Procedia CIRP 23:235–240CrossRefGoogle Scholar
  13. 13.
    Jareteg C et al. Geometry assurance integrating process variation with simulation of spring-in for composite parts and assemblies. In: ASME 2014 International Mechanical Engineering Congress and Exposition, 2014a. American Society of Mechanical Engineers, pp V02AT02A050-V002AT002A050Google Scholar
  14. 14.
    Chang M, Gossard DC (1997) Modeling the assembly of compliant, non-ideal parts. Comput Aided Des 29:701–708.  https://doi.org/10.1016/S0010-4485(97)00017-1 CrossRefGoogle Scholar
  15. 15.
    Charles Liu S, Jack Hu S (1995) An offset finite element model and its applications in predicting sheet metal assembly variation. Int J Mach Tools Manuf 35:1545–1557.  https://doi.org/10.1016/0890-6955(94)00103-Q CrossRefGoogle Scholar
  16. 16.
    Liu SC, Hu SJ, Woo TC (1996) Tolerance Analysis for Sheet Metal Assemblies. J Mech Des 118:62–67.  https://doi.org/10.1115/1.2826857 CrossRefGoogle Scholar
  17. 17.
    Liu SC, Jack Hu S (1997) A parametric study of joint performance in sheet metal assembly. Int J Mach Tools Manuf 37:873–884.  https://doi.org/10.1016/S0890-6955(95)00090-9 CrossRefGoogle Scholar
  18. 18.
    Camelio JA, Hu SJ, Marin SP (2004b) Compliant Assembly Variation Analysis Using Component Geometric Covariance. J Manuf Sci. Eng 126:355–360.  https://doi.org/10.1115/1.1644553 CrossRefGoogle Scholar
  19. 19.
    Liao X, Wang GG (2007) Non-linear dimensional variation analysis for sheet metal assemblies by contact modeling. Finite Elem Anal Des 44:34–44.  https://doi.org/10.1016/j.finel.2007.08.009 CrossRefGoogle Scholar
  20. 20.
    Xie K, Wells L, Camelio JA, Youn BD (2007) Variation Propagation Analysis on Compliant Assemblies Considering Contact Interaction. J Manuf Sci Eng 129:934–942.  https://doi.org/10.1115/1.2752829 CrossRefGoogle Scholar
  21. 21.
    Dahlström S, Lindkvist L (2006) Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling. J Manuf Sci Eng 129:615–622.  https://doi.org/10.1115/1.2714570 CrossRefGoogle Scholar
  22. 22.
    Ungemach G, Mantwill F (2008) Efficient Consideration of Contact in Compliant Assembly Variation Analysis. J. Manuf. Sci. Eng 131:011005–011005.  https://doi.org/10.1115/1.3046133 CrossRefGoogle Scholar
  23. 23.
    Lorin S, Lindkvist L, Söderberg R (2012) Simulating Part and Assembly Variation for Injection Molded Parts. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, . American Society of Mechanical Engineers, pp 487–496Google Scholar
  24. 24.
    Lorin S, Söderberg R, Carlson J, Edelvik F (2010) Simulating Geometrical Variation in Injection Molding. In: DS 61: Proceedings of Nord Design 2010, the 8th International NordDesign Conference, Göteborg, Sweden, 25.-27.08. 2010Google Scholar
  25. 25.
    Lorin S, Lindkvist L, Söderberg R, Sandboge R (2013) Combining Variation Simulation With Thermal Expansion Simulation for Geometry Assurance. J Comput Inf Sci Eng 13:031007–031007.  https://doi.org/10.1115/1.4024655 CrossRefGoogle Scholar
  26. 26.
    Sellem E, Hillerin CA, Clement A (1999) Rivière A Validation of the Tolerance Analysis of Compliant Assemblies. In: Proceedings of DETC99: 1999 ASME design engineering technical conference, Las Vegas, p 6Google Scholar
  27. 27.
    Sellem E, Rivière A (1998) Tolerance Analysis of Deformable Assemblies. In: Proceedings of the 1998 ASME Design Engineering Technical Conference, Atlanta, . pp 1–7Google Scholar
  28. 28.
    Falgarone H, Thiébaut F, Coloos J, Mathieu L (2016) Variation simulation during assembly of non-rigid components. Realistic assembly simulation with ANATOLEFLEX software. Procedia CIRP 43:202–207.  https://doi.org/10.1016/j.procir.2016.02.336 CrossRefGoogle Scholar
  29. 29.
    Franciosa P, Gerbino S, Patalano S (2010) Variation analysis of compliant assemblies: a comparative study of a multi-station assembly. In: Anales de Ingenieria Grafica, . pp 45–52Google Scholar
  30. 30.
    Gerbino S, Patalano S, Franciosa P (2008) Statistical variation analysis of multi-station compliant assemblies based on sensitivity matrix. Int J Comput Appl Technol 33:12–23.  https://doi.org/10.1504/IJCAT.2008.021881 CrossRefGoogle Scholar
  31. 31.
    Albert C, Fernlund G (2002) Spring-in and warpage of angled composite laminates. Combust. Sci. Technol 62:1895–1912.  https://doi.org/10.1016/S0266-3538(02)00105-7 CrossRefGoogle Scholar
  32. 32.
    Wisnom MR, Gigliotti M, Ersoy N, Campbell M, Potter KD (2006) Mechanisms generating residual stresses and distortion during manufacture of polymer–matrix composite structures. Compos A: Appl Sci Manuf 37:522–529.  https://doi.org/10.1016/j.compositesa.2005.05.019 CrossRefGoogle Scholar
  33. 33.
    Dong C, Zhang C, Liang Z, Wang B (2004a) Assembly dimensional variation modelling and optimization for the resin transfer moulding process. Model Simul Mater Sci Eng 12:S221–S237CrossRefGoogle Scholar
  34. 34.
    Dong C, Zhang C, Liang Z, Wang B (2004b) Dimension variation prediction for composites with finite element analysis and regression modeling. Compos A: Appl Sci Manuf 35:735–746.  https://doi.org/10.1016/j.compositesa.2003.12.005 CrossRefGoogle Scholar
  35. 35.
    Banea MD, da Silva LFM (2009) Adhesively bonded joints in composite materials: an overview proceedings of the institution of mechanical engineers. Part L: J Mater Des and Appl 223:1–18.  https://doi.org/10.1243/14644207jmda219
  36. 36.
    Thoppul SD, Finegan J, Gibson RF (2009) Mechanics of mechanically fastened joints in polymer–matrix composite structures – a review. Combust Sci Technol 69:301–329.  https://doi.org/10.1016/j.compscitech.2008.09.037 CrossRefGoogle Scholar
  37. 37.
    Wang C, Gunnion A (2006) Design methodology for scarf repairs to composite structures. DTIC Document,Google Scholar
  38. 38.
    ASTM (2003) D 790–03. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating MaterialsGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversità di Cassino e del Lazio MeridionaleCassinoItaly

Personalised recommendations