An efficient coupled Eulerian-Lagrangian finite element model for friction stir processing

  • Mohammad Ali Ansari
  • Avik Samanta
  • Reza Abdi Behnagh
  • Hongtao DingEmail author


Friction stir processing (FSP) is a friction stir-based material processing method for enhancement of material microstructural and surface properties. As FSP is a multi-physics problem coupled with severe plastic deformation, material flow, heat flow, and microstructure evolution, modeling of the FSP process can be very complicated and challenging. Few research work has been reported on modeling and simulations of FSP for material modification. In this study, a computation-efficient process model is developed using ABAQUS/Explicit based on coupled Eulerian-Lagrangian (CEL) formulation to simulate FSP of aluminum alloy 5083. The three-dimensional (3D) finite element model simulates the entire process of FSP including tool plunging, dwelling, and stirring phases. Simulations are performed to evaluate the effects of tool-rotational speed and tool pin profile during the FSP process. The computational efficiency of the developed model is also evaluated in comparison with other existing models for friction stir–welding processes. FSP experiment is performed with measurements of process force and temperature for model validation. This study shows that the CEL model can be a powerful numerical tool to simulate the complex process mechanics and optimize the FSP process parameters for industrial applications.


Friction stir processing Coupled Eulerian-Lagrangian Finite element model Aluminum alloy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

The authors gratefully acknowledge the financial support provided for part of the study carried out at the University of Iowa by the National Science Foundation under Grant No. CMMI-1537512.


  1. 1.
    Węglowski MS (2018) Friction stir processing – state of the art. Arch Civ Mech Eng 18(1):114–129CrossRefGoogle Scholar
  2. 2.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1–2):1–78CrossRefGoogle Scholar
  3. 3.
    Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39(3):642–658CrossRefGoogle Scholar
  4. 4.
    Jain R, Kumari K, Kesharwani RK, Kumar S, Pal SK, Singh SB, Panda SK, Samantaray AK (2015) Friction stir welding: scope and recent development. In: Davim JP (ed) Modern manufacturing engineering. materials forming, machining and tribology. Springer, Cham, pp 179–229.Google Scholar
  5. 5.
    Zimmer S, Langlois L, Laye J, Bigot R (2010) Experimental investigation of the influence of the FSW plunge processing parameters on the maximum generated force and torque. Int J Adv Manuf Technol 47(1–4):201–215CrossRefGoogle Scholar
  6. 6.
    Khairuddin JT, Almanar IP, Abdullah J, Hussain Z (2012) Principles and thermo-mechanical model of friction stir welding. In: Kovacevic R (ed) Welding Processes, IntechOpen, pp 191-216Google Scholar
  7. 7.
    Meyghani B, Awang M, Emamian SS, Mohd Nor MK, Pedapati SR (2017) A comparison of different finite element methods in the thermal analysis of friction stir welding (FSW). Metals (Basel) 7(11):450CrossRefGoogle Scholar
  8. 8.
    Fehrenbacher A, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2014) Effects of tool-workpiece Interface temperature on weld quality and quality improvements through temperature control in friction stir welding. Int J Adv Manuf Technol 71(1–4):165–179CrossRefGoogle Scholar
  9. 9.
    Cole EG, Fehrenbacher A, Duffie NA, Zinn MR, Pfefferkorn FE, Ferrier NJ (2014) Weld temperature effects during friction stir welding of dissimilar aluminum alloys 6061-T6 and 7075-T6. Int J Adv Manuf Technol 71(1–4):643–652CrossRefGoogle Scholar
  10. 10.
    Leal RM, Loureiro A (2004) Defects formation in friction stir welding of aluminium alloys. Mater Sci Forum 455–456:299–302CrossRefGoogle Scholar
  11. 11.
    Thomas, W. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Temple-Smith, P., and Dawes, C. J., 1995, “Friction welding”Google Scholar
  12. 12.
    Givi MKB, Asadi P (2014) Advances in friction stir welding and processing. Woodhead Publishing Ltd., AmsterdamGoogle Scholar
  13. 13.
    Yazdipour A, Shafiei MA, Dehghani K (2009) Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083. Mater Sci Eng A 527(1–2):192–197CrossRefGoogle Scholar
  14. 14.
    Sharma SR, Ma ZY, Mishra RS (2004) Effect of friction stir processing on fatigue behavior of A356 alloy. Scr Mater 51(3):237–241CrossRefGoogle Scholar
  15. 15.
    Ma ZY, Sharma SR, Mishra RS (2006) Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing. Metall Mater Trans A Phys Metall Mater Sci 37(11):3323–3336CrossRefGoogle Scholar
  16. 16.
    Selvam K, Ayyagari A, Grewal HS, Mukherjee S, Arora HS (2017) Enhancing the erosion-corrosion resistance of steel through friction stir processing. Wear 386–387(June):129–138CrossRefGoogle Scholar
  17. 17.
    Liu Q, Ma QX, Chen GQ, Cao X, Zhang S, Pan J, Zhang G, Shi Q (2018) Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing. Corros Sci 138:284–296Google Scholar
  18. 18.
    Karthikeyan L, Senthilkumar VS, Padmanabhan KA (2010) On the role of process variables in the friction stir processing of cast aluminum A319 alloy. Mater Des 31(2):761–771CrossRefGoogle Scholar
  19. 19.
    Jata KV, Semiatin SL (2000) Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scr Mater 43(8):743–749CrossRefGoogle Scholar
  20. 20.
    McNelley TR, Swaminathan S, Su JQ (2008) Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater 58(5):349–354CrossRefGoogle Scholar
  21. 21.
    Murr L, Liu G, McClure J (1997) Dynamic recrystallization in friction-stir welding of aluminium alloy 1100. J Mater Sci Lett 6(22):1801–1803CrossRefGoogle Scholar
  22. 22.
    Liu G, Murr LE, Niou CS, McClure JC, Vega FR (1997) Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scr Mater 37(3):355–361CrossRefGoogle Scholar
  23. 23.
    Mironov S, Onuma T, Sato YS, Kokawa H (2015) Microstructure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater 100(18):301–312CrossRefGoogle Scholar
  24. 24.
    Saeid T, Abdollah-zadeh A, Shibayanagi T, Ikeuchi K, Assadi H (2010) On the formation of grain structure during friction stir welding of duplex stainless steel. Mater Sci Eng A 527(24–25):6484–6488CrossRefGoogle Scholar
  25. 25.
    Rasouli S, Behnagh RA, Dadvand A, Saleki-Haselghoubi N (2016) Improvement in corrosion resistance of 5083 aluminum alloy via friction stir processing. Proc Inst Mech Eng Part L J Mater Des Appl 230(1):142–150Google Scholar
  26. 26.
    Sharifzadeh M, Ansari MA, Narvan M, Behnagh RA, Araee A, Besharati Givi MK (2015) Evaluation of wear and corrosion resistance of pure Mg wire produced by friction stir extrusion. Trans Nonferrous Met Soc China (English Ed) 25(6):1847–1855CrossRefGoogle Scholar
  27. 27.
    Miranda, R., Gandra, J., and Vilaça, P., 2013, “Surface modification by friction based processes,” Modern Surface Eng Treatments pp. 1–20Google Scholar
  28. 28.
    Gunter C, Miles MP, Liu FC, Nelson TW (2017) Solid state crack repair by friction stir processing in 304L stainless steel. J Mater Sci Technol 34(1):140–147CrossRefGoogle Scholar
  29. 29.
    Luo XC, Zhang DT, Zhang WW, Qiua C, Chen DL (2018) Tensile properties of AZ61 magnesium alloy produced by multi-pass friction stir processing: effect of sample orientation. Mater Sci Eng A 725(April):398–405CrossRefGoogle Scholar
  30. 30.
    Zhang W, Ding H, Cai M, Yang W, Li J (2018) Ultra-grain refinement and enhanced low-temperature superplasticity in a friction stir-processed Ti-6Al-4V alloy. Mater Sci Eng A 727(March):90–96CrossRefGoogle Scholar
  31. 31.
    Shokri V, Sadeghi A, Sadeghi MH (2018) Thermomechanical modeling of friction stir welding in a Cu-DSS dissimilar joint. J Manuf Process 31:46–55CrossRefGoogle Scholar
  32. 32.
    Iordache M, Badulescu C, Iacomi D, Nitu E, Ciuca C (2016) Numerical simulation of the friction stir welding process using coupled Eulerian Lagrangian method. IOP Conf Ser Mater Sci Eng 145(2):022017CrossRefGoogle Scholar
  33. 33.
    Chen K, Liu X, Ni J (2017) Thermal-mechanical modeling on friction stir spot welding of dissimilar materials based on coupled Eulerian-Lagrangian approach. Int J Adv Manuf Technol 91(5–8):1697–1707CrossRefGoogle Scholar
  34. 34.
    Al-Badour F, Merah N, Shuaib A, Bazoune A (2013) Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes. J Mater Process Technol 213(8):1433–1439CrossRefGoogle Scholar
  35. 35.
    Al-Badour F, Merah N, Shuaib A, Bazoune A (2014) Thermo-mechanical finite element model of friction stir welding of dissimilar alloys. Int J Adv Manuf Technol 72(5–8):607–617CrossRefGoogle Scholar
  36. 36.
    Ajri A, Shin YC (2017) Investigation on the effects of process parameters on defect formation in friction stir welded samples via predictive numerical modeling and experiments. J Manuf Sci Eng 139(11):111009CrossRefGoogle Scholar
  37. 37.
    Assidi M, Fourment L, Guerdoux S, Nelson T (2010) Friction model for friction stir welding process simulation: calibrations from welding experiments. Int J Mach Tools Manuf 50(2):143–155CrossRefGoogle Scholar
  38. 38.
    Assidi M, Fourment L (2009) Accurate 3D friction stir welding simulation tool based on friction model calibration. Int J Mater Form 2(SUPPL. 1):327–330CrossRefGoogle Scholar
  39. 39.
    Mandal S, Rice J, Elmustafa AA (2008) Experimental and numerical investigation of the plunge stage in friction stir welding. J Mater Process Technol 203(1–3):411–419CrossRefGoogle Scholar
  40. 40.
    Guerdoux S (2004) Numerical simulation of the friction stir welding process using both Lagrangian and arbitrary Lagrangian Eulerian formulations. AIP Conf Proc 712(2004):1259–1264CrossRefGoogle Scholar
  41. 41.
    Bussetta P, Dialami N, Boman R, Chiumenti M, Agelet De Saracibar C, Cervera M, Ponthot JP (2014) Comparison of a fluid and a solid approach for the numerical simulation of friction stir welding with a non-cylindrical pin. Steel Res Int 85(6):968–979CrossRefGoogle Scholar
  42. 42.
    de Saracibar CA, Chiumenti M, Cervera M, Dialami N, Seret A (2014) Computational modeling and sub-grid scale stabilization of incompressibility and convection in the numerical simulation of friction stir welding processes. Arch Comput Methods Eng 21(1):3–37MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Chiumenti M, Cervera M, Agelet de Saracibar C, Dialami N (2013) Numerical modeling of friction stir welding process. Comput Methods Appl Mech Eng 254:353–369CrossRefzbMATHGoogle Scholar
  44. 44.
    Dialami N, Chiumenti M, Cervera M, Agelet De Saracibar C, Ponthot JP (2015) Material flow visualization in friction stir welding via particle tracing. Int J Mater Form 8:167–181CrossRefGoogle Scholar
  45. 45.
    Chauhan P, Jain R, Pal SK, Singh SB (2018) Modeling of defects in friction stir welding using coupled Eulerian and Lagrangian method. J Manuf Process 34(November 2017):158–166CrossRefGoogle Scholar
  46. 46.
    Chu Q, Yang XW, Li WY, Vairis A, Wang WB (2018) Numerical analysis of material flow in the probeless friction stir spot welding based on coupled Eulerian-Lagrangian approach. J Manuf Process 36(July):181–187CrossRefGoogle Scholar
  47. 47.
    Hossfeld M 2016, “A fully coupled thermomechanical 3D model for all phases of friction stir welding,” 11th Int. Symp. Frict. Stir Welding, CambridgeGoogle Scholar
  48. 48.
    Cao JY, Wang M, Kong L, Yin YH, Guo LJ (2017) Numerical modeling and experimental investigation of material flow in friction spot welding of Al 6061-T6. Int J Adv Manuf Technol 89(5–8):2129–2139CrossRefGoogle Scholar
  49. 49.
    Grujicic M, Arakere G, Pandurangan B, Ochterbeck JM, Yen CF, Cheeseman BA, Reynolds AP, Sutton MA (2012) Computational analysis of material flow during friction stir welding of AA5059 aluminum alloys. J Mater Eng Perform 21(9):1824–1840CrossRefGoogle Scholar
  50. 50.
    Ding H, Shen N, Shin YC (2012) Predictive modeling of grain refinement during multi-pass cold rolling. J Mater Process Technol 212(5):1003–1013CrossRefGoogle Scholar
  51. 51.
    Ding H, Shin YC (2012) A metallo-thermomechanically coupled analysis of orthogonal cutting of AISI 1045 steel. J Manuf Sci Eng 134(5):051014CrossRefGoogle Scholar
  52. 52.
    Ding H, Shin YC (2014) Dislocation density-based grain refinement modeling of orthogonal cutting of titanium. Trans ASME, J Manuf Sci Eng 136(4):041003CrossRefGoogle Scholar
  53. 53.
    Behnagh RA, Shen N, Ansari MA, Narvan M, Besharati Givi MK, Ding H (2015) Experimental analysis and microstructure modeling of friction stir extrusion of magnesium chips. J Manuf Sci Eng 138(4):041008CrossRefGoogle Scholar
  54. 54.
    Ducobu F, Arrazola PJ, Rivière-Lorphèvre E, Zarate GO, De Madariaga A, Filippi E (2017) The CEL method as an alternative to the current modelling approaches for Ti6Al4V orthogonal cutting simulation. Procedia CIRP 58:245–250CrossRefGoogle Scholar
  55. 55.
    Tutunchilar S, Haghpanahi M, Besharati Givi MK, Asadi P, Bahemmat P (2012) Simulation of material flow in friction stir processing of a cast Al-Si alloy. Mater Des 40:415–426CrossRefGoogle Scholar
  56. 56.
    Zhang Z, Zhang HW (2009) Numerical studies on controlling of process parameters in friction stir welding. J Mater Process Technol 209(1):241–270MathSciNetCrossRefGoogle Scholar
  57. 57.
    Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng 12(1):143–157CrossRefGoogle Scholar
  58. 58.
    Benson DJ, Okazawa S (2004) Contact in a multi-material eulerian finite element formulation. Comput Methods Appl Mech Eng 193(39–41 SPEC. ISS):4277–4298CrossRefzbMATHGoogle Scholar
  59. 59.
    Benson DJ (1997) A mixture theory for contact in multi-material Eulerian formulations. Comput Methods Appl Mech Eng 140(1–2):59–86MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Spencer AJM (2004), Continuum mechanics, Courier CorporationGoogle Scholar
  61. 61.
    Jain R, Pal SK, Singh SB (2016) A study on the variation of forces and temperature in a friction stir welding process: a finite element approach. J Manuf Process 23:278–286CrossRefGoogle Scholar
  62. 62.
    Lee SL, Ou CR (2001) Gap formation and interfacial heat transfer between thermoelastic bodies in imperfect contact. J Heat Transf 123(2):205CrossRefGoogle Scholar
  63. 63.
    Holman J (1997) Heat transfer. McGraw-Hill, New YorkGoogle Scholar
  64. 64.
    Li W, Zhang Z, Li J, Chao YJ (2012) Numerical analysis of joint temperature evolution during friction stir welding based on sticking contact. J Mater Eng Perform 21(9):1849–1856CrossRefGoogle Scholar
  65. 65.
    Li H, MacKenzie D, Hamilton R (2010) Parametric finite-element studies on the effect of tool shape in friction stir welding. Proc Inst Mech Eng Part B J Eng Manuf 224(8):1161–1173CrossRefGoogle Scholar
  66. 66.
    Zhu Z, Wang M, Zhang H, Zhang X, Yu T, Wu Z (2017) A finite element model to simulate defect formation during friction stir welding. Metals (Basel) 7(7):256CrossRefGoogle Scholar
  67. 67.
    Schmidt H, Hattel J (2005) A local model for the thermomechanical conditions in friction stir welding. Model Simul Mater Sci Eng 13(1):77–93CrossRefGoogle Scholar
  68. 68.
    Hammelmüller F, and Zehetner C (2015), “Increasing numerical efficiency in coupled Eulerian-Lagrangian metal forming simulations,” Proceedings of the XIII International Conference on Computational Plasticity. Fundamentals and Applications, Barcelona, Spain, pp. 727–733Google Scholar
  69. 69.
    Nicholson DW (2008) Finite element analysis: Thermomechanics of solids, CRC PressGoogle Scholar
  70. 70.
    Johnson GR, and Cook WH (1983) “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures,” Proceedings of the 7th International Symposium on Ballistics, the NetherlandsGoogle Scholar
  71. 71.
    Kim D, Badarinarayan H, Kim JH, Kim C, Okamoto K, Wagoner RH, Chung K (2010) Numerical simulation of friction stir butt welding process for AA5083-H18 sheets. Eur J Mech A/Solids 29(2):204–215CrossRefGoogle Scholar
  72. 72.
    Aval HJ, Serajzadeh S, Kokabi AH (2011) Evolution of microstructures and mechanical properties in similar and dissimilar friction stir welding of AA5086 and AA6061. Mater Sci Eng A 528(28):8071–8083CrossRefGoogle Scholar
  73. 73.
    Van Der Steen R (2007) Tyre / road friction modeling literature surveyGoogle Scholar
  74. 74.
    Lorrain O, Serri J, Favier V, Zahrouni H, El Hadrouz M (2009) A contribution to a critical review of friction stir welding numerical simulation. J Mech Mater Struct 4(2):351–369CrossRefGoogle Scholar
  75. 75.
    Li W, Shi S, Wang F, Zhang Z, Ma T, Li J (2012) Numerical simulation of friction welding processes based on ABAQUS environment. J Eng Sci Technol Rev 5(3):10–19CrossRefGoogle Scholar
  76. 76.
    Pan W, Li D, Tartakovsky AM, Ahzi S, Khraisheh M, Khaleel M (2013) A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy. Int J Plast 48:189–204CrossRefGoogle Scholar
  77. 77.
    Awang M (2007) “Simulation of friction stir spot welding ( FSSW ) process : study of friction phenomena,” West Virginia UniversityGoogle Scholar
  78. 78.
    Lasley MJ (2005) “A finite element simulation of temperature and material flow in friction stir welding,” Brigham Young University - ProvoGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Ali Ansari
    • 1
  • Avik Samanta
    • 2
  • Reza Abdi Behnagh
    • 3
  • Hongtao Ding
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of IowaIowa CityUSA
  3. 3.Faculty of Mechanical EngineeringUrmia University of TechnologyUrmiaIran

Personalised recommendations