Spindle thermal error modeling based on selective ensemble BP neural networks

  • Qin Yin
  • Feng TanEmail author
  • Hongxu Chen
  • Guofu Yin


This paper proposes a modeling method based on selective ensemble BP neural networks for the thermal error of machine tool spindle. The fuzzy c-means clustering (FCM) algorithm and the correlation analysis were utilized in combination to select the temperature-sensitive points. A certain number of individual BP neural network models but with instable prediction performance were generated using different training sets and random initial parameters. Then, each individual BP neural network model was assigned a weight, and the genetic algorithm was used to evolve the weights. Afterwards, a prespecified threshold value was applied to select the individual BP neural network models to constitute the ensemble model. Taking a horizontal machining center THM6380 as an example, the thermal error experiment was carried out, and the prediction performance and generalization performance of the selective ensemble BP neural network model were compared with the single BP neural network model, the multiple linear regression (MLR) model, and the least-square support vector machine (LS-SVM) model. The comparison results indicated the superiority of the proposed modeling method, which provides a new idea for thermal error modeling and subsequent thermal error compensation of machine tool spindle.


Spindle thermal error BP neural network Selective ensemble model Temperature-sensitive points Prediction performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This research was financially supported by the National Science and Technology Major Project of China (grant no. 2017ZX04020001-005) and the Science and Technology Support Plan Project of Sichuan Province, China (grant no. 2017GZ0057).


  1. 1.
    Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284CrossRefGoogle Scholar
  2. 2.
    Mayr J, Jedrzejewski J, Uhlmann E, Alkan Donmez M, Knapp W, Hartig F, Wendt K, Moriwaki T, Shore P, Schmitt R (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791CrossRefGoogle Scholar
  3. 3.
    Li Y, Zhao WH, Lan SH, Ni J, Wu WW, Lu BH (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95(8):20–38CrossRefGoogle Scholar
  4. 4.
    Cao HR, Zhang XW, Chen XF (2017) The concept and progress of intelligent spindles: a review. Int J Mach Tools Manuf 112(1):21–52CrossRefGoogle Scholar
  5. 5.
    Tan F, Yin M, Wang L, Yin GF (2018) Spindle thermal error robust modeling using LASSO and LS-SVM. Int J Adv Manuf Technol 94(5–8):2861–2874CrossRefGoogle Scholar
  6. 6.
    Sun LJ, Ren MJ, Hong HB, Yin YH (2017) Thermal error reduction based on thermodynamics structure optimization method for an ultra-precision machine tool. Int J Adv Manuf Technol 88(5):1267–1277CrossRefGoogle Scholar
  7. 7.
    Creighton E, Honegger A, Tulsian A, Mukhopadhyay D (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J Mach Tools Manuf 50(4):386–393CrossRefGoogle Scholar
  8. 8.
    Wang LP, Wang HT, Li TM, Li FC (2015) A hybrid thermal error modeling method of heavy machine tools in z-axis. Int J Adv Manuf Technol 80(1):389–400CrossRefGoogle Scholar
  9. 9.
    Tan F, Yin Q, Dong GH, Xie LF, Yin GF (2017) An optimal convective heat transfer coefficient calculation method in thermal analysis of spindle system. Int J Adv Manuf Technol 97(5):2549–2560CrossRefGoogle Scholar
  10. 10.
    Guo QJ, Yang JG (2011) Application of projection pursuit regression to thermal error modeling of a CNC machine tool. Int J Adv Manuf Technol 55(5):623–629Google Scholar
  11. 11.
    Ramesh R, Mannan MA, Poo AN (2002) Support vector machines model for classification of thermal error in machine tools. Int J Adv Manuf Technol 20(2):114–120CrossRefGoogle Scholar
  12. 12.
    Miao EM, Gong YY, Niu PC, Ji CZ, Chen HD (2013) Robustness of thermal error compensation modeling models of CNC machine tools. Int J Adv Manuf Technol 69(9–12):2593–2603CrossRefGoogle Scholar
  13. 13.
    Yang S, Yuan J, Ni J (1996) The improvement of thermal error modeling and compensation on machine tools by CMAC neural network. Int J Mach Tools Manuf 36(4):527–537CrossRefGoogle Scholar
  14. 14.
    Liang RJ, Ye WH, Zhang HY, Yang QF (2012) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63(9):1167–1176Google Scholar
  15. 15.
    Zhang Y, Yang JG, Jiang H (2012) Machine tool thermal error modeling and prediction by gray neural network. Int J Adv Manuf Technol 59(9):1065–1072CrossRefGoogle Scholar
  16. 16.
    Cheng Q, Qi Z, Zhang GJ, Zhao YS, Sun BWGPH (2016) Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks. Int J Adv Manuf Technol 83(5):753–764CrossRefGoogle Scholar
  17. 17.
    Guo QJ, Xu RF, Yang TY, He L, Cheng X, Li ZY, Yang JG (2016) Application of GRAM and AFSACA-BPN to thermal error optimization modeling of CNC machine tools. Int J Mach Tools Manuf 83(5):995–1002CrossRefGoogle Scholar
  18. 18.
    Ma C, Zhao L, Mei XS, Shi H, Yang J (2017) Thermal error compensation of high-speed spindle system based on a modified BP neural network. Int J Adv Manuf Technol 89(9):3071–3085CrossRefGoogle Scholar
  19. 19.
    Ma C, Zhao L, Mei XS, Shi H, Yang J (2017) Error compensation based on genetic algorithm and artificial neural network of the shaft in the high-speed spindle system. P I Mech Eng B-J Eng 231(5):753–767Google Scholar
  20. 20.
    Hansen LK, Salamon P (1990) Neural network ensembles. IEEE T Pattern Anal 12(10):993–1001CrossRefGoogle Scholar
  21. 21.
    Zhou ZH, Wu JH, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intel 137(1–2):239–263MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    230-3 ISO (2007) Test code for machine tools part 3: determination of thermal effects. ISO copyright office, GenevaGoogle Scholar
  23. 23.
    Han J, Wang LP, Wang HT, Cheng NB (2012) A new thermal error modeling method for CNC machine tools. Int J Adv Manuf Technol 62(1):205–212CrossRefGoogle Scholar
  24. 24.
    Wang HT, Wang LP, Li TM, Han J (2013) Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method. Int J Adv Manuf Technol 69(1):121–126CrossRefGoogle Scholar
  25. 25.
    Liu H, Miao EM, Wei XY, Zhuang XD (2017) Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm. Int J Mach Tools Manuf 113(2):35–48CrossRefGoogle Scholar
  26. 26.
    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRefGoogle Scholar
  27. 27.
    Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140zbMATHGoogle Scholar
  28. 28.
    Houck CR, Joines J, Kay MG (1995) A genetic algorithm for function optimization: a Matlab implementation. NCSU-IE TR 95(5):1–14Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Manufacturing Science and EngineeringSichuan UniversityChengduPeople’s Republic of China
  2. 2.School of Advanced Manufacturing EngineeringChongqing University of Posts and TelecommunicationsChongqingPeople’s Republic of China

Personalised recommendations