Advertisement

Atmospheric pressure plasma jet–assisted impregnation of gold nanoparticles into PVC polymer for various applications

  • Andrea Jurov
  • Dean Popović
  • Iva Šrut Rakić
  • Ida Delač Marion
  • Gregor Filipič
  • Janez Kovač
  • Uroš Cvelbar
  • Nikša Krstulović
ORIGINAL ARTICLE
  • 13 Downloads

Abstract

Atmospheric pressure plasma jet is used as a tool to design polymer/nanoparticle composite materials for various applications. The aim of this research is to get a cheap and green method for nanoparticle impregnation into polymer surfaces. The proposed route consists of nanoparticle synthesis by laser ablation in water and their impregnation into polymers assisted by atmospheric pressure plasma jet. The impregnation is achieved by increased roughness of treated samples containing nanoparticles which are embedded into such rough structures. This proof-of-concept method is based on pre- or post-treatment of PVC polymer drop-coated with Au nanoparticles by helium atmospheric pressure plasma jet.

Keywords

Atmospheric pressure plasma jet Polymer nanocomposites Nanoparticles impregnation Polymer treatments Poly(vinyl chloride) (PVC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

N.K. acknowledges COST Action TD1208 “Electrical Discharges with Liquids for Future Applications” which provided relevant discussions.

Funding

This work was partially supported by the project “Laser-Cold Plasma Interaction and Diagnostics” (HrZZ-IP-11-2013-2753) funded by the Croatian Science Foundation and partially from “Laser synthesis of Au nanoparticles in liquids” funded by the Croatian Academy of Science and Arts. A.J., G.F., and U.C. are supported by grants M.ERA-Net “PlasmaTex” and L2-6769 ARRS (Slovenian Research Agency).

Supplementary material

170_2018_2988_MOESM1_ESM.docx (368 kb)
ESM 1 (DOCX 368 kb)

References

  1. 1.
    Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468–3517CrossRefGoogle Scholar
  2. 2.
    Bleach R, Karagoz B, Prakash SM, Davisn TP, Boyer C (2014) In situ formation of polymer−gold composite nanoparticles with tunable morphologies. ACS Macro Lett 3:591–596CrossRefGoogle Scholar
  3. 3.
    Sawant SN, Selvaraj V, Prabhawathi V, Doble M (2010) Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. PLoS One 8(e63311):1–9Google Scholar
  4. 4.
    Polavarapua L, Liz-Marzán LM (2013) Towards low-cost flexible substrates for nanoplasmonic sensing. Phys Chem Chem Phys 15:5288–5300CrossRefGoogle Scholar
  5. 5.
    Rahman WN, Wong CJ, Ackerly T, Yagi N, Geso M (2012) Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation dose enhancement in synchrotron and conventional radiotherapy type beams. Australas Phys Eng Sci Me 35:301–309CrossRefGoogle Scholar
  6. 6.
    Liao W, Wu BZ, Nian H, Chen HY, Yu JJ, Chiu KH (2012) Fabrication of a form- and size-variable microcellular-polymer-stabilized metal nanocomposite using supercritical foaming and impregnation for catalytic hydrogenation. Nanoscale Res Lett 7(283):1–7Google Scholar
  7. 7.
    Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2381CrossRefGoogle Scholar
  8. 8.
    Du H, Cao Y, Bai Y, Zhang P, Qian X, Wang D, Li T, Tang X (1998) Photovoltaic properties of polymer/Fe2O3/polymer heterostructured microspheres. J Phy Chem B 102:2329–2332CrossRefGoogle Scholar
  9. 9.
    Homayoonfal M, Mehrnia MR, Mojtahedi YM, Ismail AF (2013) Effect of metal and metal oxide nanoparticle impregnation route on structure and liquid filtration performance of polymeric nanocomposite membranes: a comprehensive review. Desalin Water Treat 51:3295–3316CrossRefGoogle Scholar
  10. 10.
    Zhang RC, Sun D, Zhang R, Lin WF, Macias-Montero M, Patel J, Askari S, McDonald C, Mariotti D, Maguire P (2017) Gold nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric pressure plasma and their potential for fuel cell electrocatalytic application. Sci Rep 7:1–9CrossRefGoogle Scholar
  11. 11.
    Modjarrd K, Ebnesajjad S (2014) Handbook of polymer applications in medicine and medical devices. William Andrew Publishing, Chadds FordGoogle Scholar
  12. 12.
    Fedorov K, Jankowski A, Sheikh S, Blaszykowski C, Reheman A, Romaschin A, Nid H, Thompson M (2015) Prevention of surface-induced thrombogenesis on poly(vinyl chloride). J Mater Chem B 3:8623–8628CrossRefGoogle Scholar
  13. 13.
    Favia P, d'Aggostino R (1998) Plasma treatments and plasma deposition of polymers for biomedical applications. Surf Coat Technol 98:1102–1106CrossRefGoogle Scholar
  14. 14.
    Balazs DJ, Triandafillu K, Wood P, Chevolot Y, van Delden C, Harms H, Hollenstein C, Mathieu HJ (2004) Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments. Biomaterials 25:2139–2151CrossRefGoogle Scholar
  15. 15.
    Zhang W, Chu PK, Ji J, Zhang Y, Liu X, Fu RKY, Ha PCT, Yan Q (2006) Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties. Biomaterials 27:44–51CrossRefGoogle Scholar
  16. 16.
    Miao H, Jierong C (2009) Inactivation of Escherichia coli and properties of medical poly(vinyl chloride) in remote-oxygen plasma. Appl Surf Sci 255:5690–5697CrossRefGoogle Scholar
  17. 17.
    Sánchez-Obrero G, Mayén M, Rodríguez-Mellado JM, Rodríguez-Amaro R (2012) New biosensor for phenols compounds based on gold nanoparticle-modified PVC/TTF-TCNQ composite electrode. Int J Electrochem Sci 7:10952–10964Google Scholar
  18. 18.
    Sánchez-Obrero G, Cano M, Ávila JL, Mayén M, Mena ML, Pingarrón JM, Rodríguez-Amaro R (2009) A gold nanoparticle-modified PVC/TTF-TCNQ composite amperometric biosensor for glucose determination. J Electroanal Chem 634:59–63CrossRefGoogle Scholar
  19. 19.
    García-Pineda I, Mayén M, Rodríguez-Mellado JM, Rodríguez-Amaro R (2013) NADH electrocatalytic oxidation on gold nanoparticle-modified PVC/TTF-TCNQ composite electrode. Application as Amperometric Sensor. Electroanalysis 25:1981–1987CrossRefGoogle Scholar
  20. 20.
    Sánchez-Obrero G, Mayén M, Rodriguez Mellado JM, Rodríguez-Amaro R (2011) Electrocatalytic oxidation of acetaminophen on a PVC/TTF-TCNQ composite electrode modified by gold nanoparticles: application as an amperometric sensor. Int J Electrochem Sci 6:2001–2011Google Scholar
  21. 21.
    Lee KY, Kim DW, Heo J, Kim JS, Yang JK, Cheong GW, Han SW (2006) Novel colorimetric sensing of anion with gold nanoparticles-embedded plasticized polymer membrane. Bull Kor Chem Soc 27:2081–2083CrossRefGoogle Scholar
  22. 22.
    Segev-Bar M, Landman A, Nir-Shapira M, Shuster G, Haick H (2013) A tunable touch sensor and combined sensing platform: towards nanoparticle-based electronic skin. ACS Appl Mater Interfaces 5:5531–5541CrossRefGoogle Scholar
  23. 23.
    Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B 6:2–30CrossRefGoogle Scholar
  24. 24.
    Laroussi M, Akan T (2007) Arc-free atmospheric pressure cold plasma jets: a review. Plasma Process Polym 4:777–788CrossRefGoogle Scholar
  25. 25.
    Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K (2016) Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep 630:1–84MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yang G (2012) Laser ablation in liquids: principles and applications in the preparation of nanomaterials. Pan Stanford Publishing, SingaporeCrossRefGoogle Scholar
  27. 27.
    Barcikowski S, Mafuné F (2011) Trends and current topics in the field of laser ablation and nanoparticle generation in liquids. J Phys Chem C 115:4985–4985CrossRefGoogle Scholar
  28. 28.
    Zhang D, Gökce B, Barcikowski S (2017) Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev 117:3990–4103CrossRefGoogle Scholar
  29. 29.
    Besner S, Kabashin AV, Winnik FM, Meunier M (2008) Ultrafast laser based “green” synthesis of non-toxic nanoparticles in aqueous solutions. Appl Phys A Mater Sci Process 93:955–959CrossRefGoogle Scholar
  30. 30.
    Bärsch N, Jakobi J, Weiler S, Barcikowski S (2009) Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone. Nanotechnology 20(445603):1–9Google Scholar
  31. 31.
    Zhang J, Post M, Veres T, Jakubek ZJ, Guan J, Wang D, Normandin F, Deslandes Y, Simard B (2006) Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles. J Phys Chem B 110:7122–7128CrossRefGoogle Scholar
  32. 32.
    Anikin KV, Melnik NN, Simakin AV, Shafeev GA, Voronov VV, Vitukhnovsky AG (2002) Formation of ZnSe and CdS quantum dots via laser ablation in liquids. Chem Phys Lett 366:357–360CrossRefGoogle Scholar
  33. 33.
    Amendola V, Riello P, Meneghetti M (2011) Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents. J Phys Chem C 115:5140–5146CrossRefGoogle Scholar
  34. 34.
    Tarasenko NV, Butsen AV, Nedelko MI, Tarasenka NN (2012) Laser-aided preparation and modification of gadolinium silicide nanoparticles in liquid. J Phys Chem C 116:3897–3902CrossRefGoogle Scholar
  35. 35.
    Krstulović N, Shannon S, Stefanuik R, Fanara C (2013) Underwater-laser drilling of aluminum. Int J Adv Manuf Technol 69:1765–1773CrossRefGoogle Scholar
  36. 36.
    Krstulović N, Umek P, Salamon K, Capan I (2017) Synthesis of Al-doped ZnO nanoparticles by laser ablation of ZnO:Al2O3 target in water. Mater Res Express 4(105003):1–6Google Scholar
  37. 37.
    Krstulovic N, Salamon K, Budimlija O, Kovac J, Dasovic J, Umek P, Capan I (2018) Parameters optimization for synthesis of Al-doped ZnO nanoparticles by laser ablation in water. Appl Surf Sci 440:916–925CrossRefGoogle Scholar
  38. 38.
    Krstulovic N, Milosevic S (2010) Drilling enhancement by nanosecond–nanosecond collinear dual-pulse laser ablation of titanium in vacuum. Appl Surf Sci 256:4142–4148CrossRefGoogle Scholar
  39. 39.
    Lu X, Laroussi M, Puech V (2012) On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci Technol 21:034005CrossRefGoogle Scholar
  40. 40.
    Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665CrossRefGoogle Scholar
  41. 41.
    Zang Z, Tang X (2015) Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method. J Alloy Compd 619:98–101CrossRefGoogle Scholar
  42. 42.
    Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(013705):1–8Google Scholar
  43. 43.
    Guo D, Xie G, Luo J (2014) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47:013001CrossRefGoogle Scholar
  44. 44.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy, Physical Electronics Inc. Eden Prairie, MinnesotaGoogle Scholar
  45. 45.
    Vesel A, Mozetic M, Drenik A, Milosevic S, Krstulovic N, Balat-Pichelin M, Poberaj I, Babic D (2006) Cleaning of porous aluminium titanate by oxygen plasma. Plasma Chem Plasma Process 26:577–584CrossRefGoogle Scholar
  46. 46.
    Vesel A, Mozetic M, Hladnik A, Dolenc J, Zule J, Milosevic S, Krstulovic N, Klanjšek-Gunde M, Hauptmann N (2007) Modification of ink-jet paper by oxygen-plasma treatment. J Phys D Appl Phys 40:3689–3696CrossRefGoogle Scholar
  47. 47.
    Vujošević D, Mozetič M, Cvelbar U, Krstulović N, Milošević S (2007) Optical emission spectroscopy characterization of oxygen plasma during degradation of Escherichia coli. J Appl Phys 101(103305):1–7Google Scholar
  48. 48.
    Krstulović N, Cvelbar U, Vesel A, Milošević S, Mozetič M (2009) An optical-emission-spectroscopy characterization of oxygen plasma during the oxidation of aluminium foils. Mater Tehnol 43:245–249Google Scholar
  49. 49.
    Olenici-Craciunescu SB, Muller S, Michels A, Horvatic V, Vadla C, Franzke J (2011) Spatially resolved spectroscopic measurements of a dielectric barrier discharge plasma jet applicable for soft ionization. Spectrochim Acta B 66:268–273CrossRefGoogle Scholar
  50. 50.
    Xiong Q, Lu X, Liu J, Xian Y, Xiong Z, Zou F, Zou C, Gong W, Hu J, Chen K, Pei X, Jiang Z, Pan Y (2009) Temporal and spatial resolved op0tical emission behaviors of a cold atmospheric pressure plasma jet. J Appl Phys 106:083302CrossRefGoogle Scholar
  51. 51.
    Zaplotnik R, Bišćan M, Krstulović N, Popović D, Milošević S (2015) Cavity ring-down spectroscopy for atmospheric pressure plasma jet analysis. Plasma Sources Sci Technol 24(054004):1–14Google Scholar
  52. 52.
    Zaplotnik R, Bišćan M, Popović D, Mozetič M, Milošević S (2016) Metastable helium atom density in a single electrode atmospheric plasma jet during sample treatment. Plasma Sources Sci Technol 25(035023):1–10Google Scholar
  53. 53.
    Zaplotnik R, Bišćan M, Kregar Z, Cvelbar U, Mozetič M, Milošević S (2015) Influence of a sample surface on single electrode atmospheric plasma jet parameters. Spectrochim Acta B 103–104:124–130CrossRefGoogle Scholar
  54. 54.
    Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217CrossRefGoogle Scholar
  55. 55.
    Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 79:4215–4221CrossRefGoogle Scholar
  56. 56.
    Near RD, Hayden SC, Hunter RE Jr, Thackston D, El-Sayed MA (2013) Rapid and efficient prediction of optical extinction coefficients for gold nanospheres and gold nanorods. J Phys Chem C 117:23950–23955CrossRefGoogle Scholar
  57. 57.
    Schlücker S (2009) SERS microscopy: nanoparticle probes and biomedical applications. Chem Phys Chem 10:1344–1354CrossRefGoogle Scholar
  58. 58.
    Junkar I, Vesel A, Cvelbar U, Mozetič M, Strnad S (2010) Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymers. Vacuum 84:83–85CrossRefGoogle Scholar
  59. 59.
    Molinari R, Palmisano L, Drioli E, Schiavello M (2002) Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. J Membr Sci 206:399–415CrossRefGoogle Scholar
  60. 60.
    Bae TH, Tak TM (2005) Effect of TiO2 nanoparticle on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci 249:1–8CrossRefGoogle Scholar
  61. 61.
    Rahimpour A, Madaeni SS, Taheri AH, Mansourpanah Y (2008) Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J Membr Sci 313:158–169CrossRefGoogle Scholar
  62. 62.
    Beamson G, Briggs D (1992) High resolution XPS of organic polymers. John Wiley & Sons Ltd., New YorkGoogle Scholar
  63. 63.
    Zheng X, Chen G, Zhang Z, Beem J, Massey S, Huang J (2013) A two-step process for surface modification of poly(ethylene terephthalate) fabrics by Ar/O2 plasma-induced facile polymerization at ambient conditions. Surf Coat Technol 226:123–129CrossRefGoogle Scholar
  64. 64.
    Rangel EC, dos Santos NM, Bortoleto JRR, Durrant SF, Schreiner WH, Hondac RY, de Cássia R, Rangel C, Cruz NC (2011) Treatment of PVC using an alternative low energy ion bombardment procedure. Appl Surf Sci 258:1854–1861CrossRefGoogle Scholar
  65. 65.
    Phan LT, Yoon SM, Moon MW (2017) Plasma-based nanostructuring of polymers: a review. Polymers 9(417):1–24Google Scholar
  66. 66.
    Cvelbar U, Pejovnik S, Mozetič M, Zalar A (2003) Increased surface roughness by oxygen plasma treatment of graphite/polymer composite. Appl Surf Sci 210:255–261CrossRefGoogle Scholar
  67. 67.
    Slepička P, Slepičková Kasálková N, Stránská E, Bačáková L, Švorčík V (2013) Surface characterization of plasma treated polymers for applications as biocompatible carriers. Express Polym Lett 7:535–545CrossRefGoogle Scholar
  68. 68.
    Suganya A, Shanmugavelayutham G, Serra Rodríguez C (2016) Study on structural, morphological and thermal properties of surface modified polyvinylchloride (PVC) film under air, argon and oxygen discharge plasma. Mater Res Express 3:095302CrossRefGoogle Scholar
  69. 69.
    Krstulovic N, Labazan I, Milošević S, Cvelbar U, Vesel A, Mozetič M (2006) Optical emission spectroscopy characterization of oxygen plasma during treatment of a PET foil. J Phys D Appl Phys 39:3799–3804CrossRefGoogle Scholar
  70. 70.
    Bonadies I, Avella M, Avolio R, Carfagna C, Gentile G, Immirzi B, Errico ME (2012) Probing the effect of high energy ball milling on PVC through a multitechnique approach. Polym Test 31:176–181CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Andrea Jurov
    • 1
    • 2
  • Dean Popović
    • 1
  • Iva Šrut Rakić
    • 1
    • 3
  • Ida Delač Marion
    • 1
    • 3
  • Gregor Filipič
    • 4
  • Janez Kovač
    • 4
  • Uroš Cvelbar
    • 4
  • Nikša Krstulović
    • 1
  1. 1.Institute of PhysicsZagrebCroatia
  2. 2.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  3. 3.Center of Excellence for Advanced Materials and Sensing Devices, Institute of PhysicsZagrebCroatia
  4. 4.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations