Advertisement

Investigation on the influence of the equivalent bending stiffness of the thin-walled parts on the machining deformation

  • Bianhong Li
  • Hanjun Gao
  • Hongbin DengEmail author
  • Hai Pan
  • Baoguo Wang
ORIGINAL ARTICLE
  • 59 Downloads

Abstract

A semi-analytical model considering the biaxial blank residual stress is proposed to predict the machining deformation of the thin-walled parts. Machining deformations of five thin-walled parts with different stiffening rib layouts are calculated using the proposed model, and the accuracy of the model is validated by FEM simulations and machining experiments. In comparison with the experimental results, the relative errors of the final vertex deformations calculated by the proposed model for specimens 1–5 are 3.08%, 5.66%, 9.15%, 3.60%, and 8.43%, respectively. Then, the influence of the equivalent bending stiffness on the machining deformation is investigated. Results show that, compared with specimen 1, the equivalent bending stiffness in the X direction of specimens 2–5 are increased by 35.48%, 94.02%, 96.29%, and 100.15%, respectively; meanwhile, the maximum deformations are decreased by 23.42%, 30.92%, 30.66%, and 17.72%, respectively. The machining deformation decreases with the increase of equivalent bending stiffness in the length direction, and the equivalent stiffness in the width direction has no significant influence on the overall machining deformation. Stiffening ribs can be added to increase the bending stiffness and decrease the deformation in machining process. The deformation can be further reduced when the stiffening ribs are placed closer to the maximum deformation point.

Graphical abstract

Keywords

Machining deformation Equivalent bending stiffness Residual stress Semi-analytical prediction model FEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is financially supported by the China National Natural Science Foundation (No. 5177041109).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Fielder R, Montoya A, Millwater H, Golden P (2017) Residual stress sensitivity analysis using a complex variable finite element method. Int J Mech Sci 133:112–120.  https://doi.org/10.1016/j.ijmecsci.2017.08.035 CrossRefGoogle Scholar
  2. 2.
    Gao HJ, Zhang YD, Wu Q, Song J (2017) Experimental investigation on the fatigue life of Ti-6Al-4V treated by vibratory stress relief. Metals (Basel) 7:158.  https://doi.org/10.3390/met7050158 CrossRefGoogle Scholar
  3. 3.
    Gao H, Zhang Y, Wu Q, Song J, Wen K (2018) Fatigue life of 7075-T651 aluminium alloy treated with vibratory stress relief. Int J Fatigue 108:62–67.  https://doi.org/10.1016/j.ijfatigue.2017.11.011 CrossRefGoogle Scholar
  4. 4.
    Li Y, Zhou K, Tan P, Tor SB, Chua CK, Leong KF (2018) Modeling temperature and residual stress fields in selective laser melting. Int J Mech Sci 136:24–35.  https://doi.org/10.1016/j.ijmecsci.2017.12.001 CrossRefGoogle Scholar
  5. 5.
    Wang F, Mao K, Li B (2018) Prediction of residual stress fields from surface stress measurements. Int J Mech Sci 140:68–82.  https://doi.org/10.1016/j.ijmecsci.2018.02.043 CrossRefGoogle Scholar
  6. 6.
    Huang X, Sun J, Li J (2015) Finite element simulation and experimental investigation on the residual stress-related monolithic component deformation. Int J Adv Manuf Technol 77:1035–1041.  https://doi.org/10.1007/s00170-014-6533-9 CrossRefGoogle Scholar
  7. 7.
    Wang J, Zhang D, Wu B, Luo M (2018) Prediction of distortion induced by machining residual stresses in thin-walled components. Int J Adv Manuf Technol 95(1–10):4153–4162.  https://doi.org/10.1007/s00170-017-1358-y CrossRefGoogle Scholar
  8. 8.
    Liu L, Sun J, Chen W, Sun P (2015) Study on the machining distortion of aluminum alloy parts induced by forging residual stresses. Proc Inst Mech Eng Part B J Eng Manuf 231:1–10.  https://doi.org/10.1177/0954405415583805 Google Scholar
  9. 9.
    Jiang Z, Liu Y, Li L, Shao W (2014) A novel prediction model for thin plate deflections considering milling residual stresses. Int J Adv Manuf Technol 74:37–45.  https://doi.org/10.1007/s00170-014-5952-y CrossRefGoogle Scholar
  10. 10.
    D’Alvise L, Chantzis D, Schoinochoritis B, Salonitis K (2015) Modelling of part distortion due to residual stresses relaxation: an aeronautical case study. Procedia CIRP 31:447–452.  https://doi.org/10.1016/j.procir.2015.03.069 CrossRefGoogle Scholar
  11. 11.
    Huang K, Yang W, Ye X (2018) Adjustment of machining-induced residual stress based on parameter inversion. Int J Mech Sci 135:43–52.  https://doi.org/10.1016/j.ijmecsci.2017.11.014 CrossRefGoogle Scholar
  12. 12.
    Huang K, Yang W (2016) Analytical modeling of residual stress formation in workpiece material due to cutting. Int J Mech Sci 114:21–34.  https://doi.org/10.1016/j.ijmecsci.2016.04.018 CrossRefGoogle Scholar
  13. 13.
    Huang K, Yang W (2016) Analytical model of temperature field in workpiece machined surface layer in orthogonal cutting. J Mater Process Technol 229:375–389.  https://doi.org/10.1016/j.jmatprotec.2015.07.008 CrossRefGoogle Scholar
  14. 14.
    Huang K, Yang W, Chen Q (2015) Analytical model of stress field in workpiece machined surface layer in orthogonal cutting. Int J Mech Sci 103:127–140.  https://doi.org/10.1016/j.ijmecsci.2015.08.020 CrossRefGoogle Scholar
  15. 15.
    Huang K, Yang W (2017) Analytical analysis of the mechanism of effects of machining parameter and tool parameter on residual stress based on multivariable decoupling method. Int J Mech Sci 128–129:659–679.  https://doi.org/10.1016/j.ijmecsci.2017.05.031 CrossRefGoogle Scholar
  16. 16.
    Yang D, Liu Z (2015) Surface plastic deformation and surface topography prediction in peripheral milling with variable pitch end mill. Int J Mach Tools Manuf 91:43–53.  https://doi.org/10.1016/j.ijmachtools.2014.11.009 CrossRefGoogle Scholar
  17. 17.
    Cheng Y, Zuo D, Wu M, Feng X, Zhang Y (2015) Study on simulation of machining deformation and experiments for thin-walled parts of titanium alloy. Int J Control Autom 8:401–410.  https://doi.org/10.14257/ijca.2015.8.1.38 CrossRefGoogle Scholar
  18. 18.
    Diez E, Perez H, Marquez J, Vizan A (2015) Feasibility study of in-process compensation of deformations in flexible milling. Int J Mach Tools Manuf 94:1–14.  https://doi.org/10.1016/j.ijmachtools.2015.03.008 CrossRefGoogle Scholar
  19. 19.
    Ma Y, Feng P, Zhang J, Wu Z, Yu D (2016) Prediction of surface residual stress after end milling based on cutting force and temperature. J Mater Process Technol 235:41–48.  https://doi.org/10.1016/j.jmatprotec.2016.04.002 CrossRefGoogle Scholar
  20. 20.
    Cerutti X, Mocellin K (2015) Parallel finite element tool to predict distortion induced by initial residual stresses during machining of aeronautical parts. Int J Mater Form 8:255–268.  https://doi.org/10.1007/s12289-014-1164-0 CrossRefGoogle Scholar
  21. 21.
    Pugazhenthi A, Kanagarajc G, Dinaharand I, David Raja Selvame J (2018) Turning characteristics of in situ formed TiB2 ceramic particulate reinforced AA7075 aluminum matrix composites using polycrystalline diamond cutting tool. MEASUREMENT 121:39–46.  https://doi.org/10.1016/j.measurement.2018.02.039 CrossRefGoogle Scholar
  22. 22.
    Nieslony P, Krolczyk GM, Wojciechowski S, Chudy R, Zak K, Maruda RW (2018) Surface quality and topographic inspection of variable compliance part after precise turning. Appl Surf Sci 434:91–101.  https://doi.org/10.1016/j.apsusc.2017.10.158 CrossRefGoogle Scholar
  23. 23.
    Li JG, Wang SQ (2017) Distortion caused by residual stresses in machining aeronautical aluminum alloy parts: recent advances. Int J Adv Manuf Technol 89:997–1012.  https://doi.org/10.1007/s00170-016-9066-6 CrossRefGoogle Scholar
  24. 24.
    Li B, Jiang X, Yang J, Liang SY (2015) Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part. J Mater Process Technol 216:223–233.  https://doi.org/10.1016/j.jmatprotec.2014.09.016 CrossRefGoogle Scholar
  25. 25.
    Zhang Z, Li L, Yang Y, He N, Zhao W (2014) Machining distortion minimization for the manufacturing of aeronautical structure. Int J Adv Manuf Technol 73:1765–1773.  https://doi.org/10.1007/s00170-014-5994-1 CrossRefGoogle Scholar
  26. 26.
    Cerutti X, Mocellin K, Hassini S, Blaysat B, Duc E (2017) Methodology for aluminium part machining quality improvement considering mechanical properties and process conditions. CIRP J Manuf Sci Technol 18:18–38.  https://doi.org/10.1016/j.cirpj.2016.07.004 CrossRefGoogle Scholar
  27. 27.
    Wojciechowski S, Maruda RW, Barrans S, Nieslony P, Krolczyk GM (2017) Optimisation of machining parameters during ball end milling of hardened steel with various surface inclinations. MEASUREMENT 111:18–28.  https://doi.org/10.1016/j.measurement.2017.07.020 CrossRefGoogle Scholar
  28. 28.
    Wu Q, Li DP, Zhang YD (2016) Detecting milling deformation in 7075 aluminum alloy aeronautical monolithic components using the quasi-symmetric machining method. Metals (Basel) 6:80.  https://doi.org/10.3390/met6040080 CrossRefGoogle Scholar
  29. 29.
    Masoudi S, Amini S, Saeidi E, Eslami-Chalander H (2014) Effect of machining-induced residual stress on the distortion of thin-walled parts. Int J Adv Manuf Technol 76:597–608.  https://doi.org/10.1007/s00170-014-6281-x CrossRefGoogle Scholar
  30. 30.
    Yang Y, Li M, Li KR (2014) Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component. Int J Adv Manuf Technol 70:1803–1811.  https://doi.org/10.1007/s00170-013-5431-x CrossRefGoogle Scholar
  31. 31.
    Rafey Khan A, Nisar S, Shah A, Khan MA, Khan SZ, Sheikh MA (2017) Reducing machining distortion in AA 6061 alloy through re-heating technique. Mater Sci Technol (United Kingdom) 33:731–737.  https://doi.org/10.1080/02670836.2016.1243335 CrossRefGoogle Scholar
  32. 32.
    Husson R, Baudouin C, Bigot R, Sura E (2014) Consideration of residual stress and geometry during heat treatment to decrease shaft bending. Int J Adv Manuf Technol 72:1455–1463.  https://doi.org/10.1007/s00170-014-5688-8 CrossRefGoogle Scholar
  33. 33.
    Gao H, Zhang Y, Wu Q, Song J (2017) An analytical model for predicting the machining deformation of a plate blank considers biaxial initial residual stresses. Int J Adv Manuf Technol 93(1–4):1473–1486.  https://doi.org/10.1007/s00170-017-0528-2 CrossRefGoogle Scholar
  34. 34.
    Timoshenko S, Woinosky-Krieger S (1959) Theory of plates and shells classic. McGraw-Hill, New York, USAGoogle Scholar
  35. 35.
    Gere JM, Goodno BJ (1972) Mechanics of materials. In: Mechanics of materials, vol 41. Van Nostrand Reinhold Co., New York, NY, USA, pp 211–291.  https://doi.org/10.1016/j.mechmat.2009.01.011 Google Scholar
  36. 36.
    Xv Q (2016) Idea and method for solving elastic problem of rectangular boundary. Tsinghua university press, Beijing, China (In Chinese)Google Scholar
  37. 37.
    Greving DJ, Rybicki EF, Shadley JR (1994) Through-thickness residual stress evaluations for several industrial thermal spray coatings using a modified layer-removal method. J Therm Spray Technol 3(4):379–388CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Bianhong Li
    • 1
    • 2
  • Hanjun Gao
    • 3
    • 2
  • Hongbin Deng
    • 1
    Email author
  • Hai Pan
    • 4
  • Baoguo Wang
    • 4
  1. 1.School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, The Royal National Orthopaedic HospitalUniversity College LondonLondonUK
  3. 3.State Key Laboratory of Virtual Reality Technology and Systems, School of Mechanical Engineering and AutomationBeihang UniversityBeijingPeople’s Republic of China
  4. 4.China Weaponry Huaihai Industrial GroupChangzhi CityPeople’s Republic of China

Personalised recommendations