Laser beam machining of carbon fiber reinforced composites: a review

  • M. H. El-Hofy
  • H. El-HofyEmail author


Carbon fiber reinforced polymer (CFRP) composites gained wide acceptance in aerospace, automotive and marine industries due to their superior properties. It became the major structural material that substitutes metals in many weight-critical components such as the new A350 and the B787 aircrafts, with composite content to exceed the 50%. Although CFRP structures are manufactured to near-net-shape, edge trimming, drilling, sawing, milling, and grinding operations are unavoidable. Being anisotropic, inhomogeneous and highly abrasive, their conventional machining is normally associated with delamination, fibers pull-out, inadequate surface quality, and tool wear. Other nontraditional processes which include abrasive water jet machining (AWJM), ultrasonic machining (USM), and electrodischarge machining (EDM) offer substitute to the conventional methods. Laser beam machining (LBM) is an emerging technology offering an excellent alternative for machining CFRP composites. This paper reviews the research work carried out in the area of LBM of CFRP materials. It reports the experimental and theoretical studies covering the process accuracy in terms kerf width, kerf depth and edge quality, and the thermal characteristics in terms of heat-affected zone (HAZ). Minimizing the kerf taper, increasing kerf depth, and eliminating the HAZ in the polymer matrix are considered the major obstacles of CFRP industrial applications. Methods of improving the machining productivity by reducing the machining time and increasing the material removal rate (MRR) and kerf depth are reviewed. Several mathematical and statistical modeling and optimization techniques have been critically examined. The concept of specific energy and its impact on HAZ and kerf width is introduced. The relationship between laser type and HAZ is discussed. The current work furthermore outlines the possible trends for future research.


CFRP Composite Heat-affected zone Cutting Drilling Matrix Kerf width 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Compliance with ethical standards

Conflict of interests

The authors declare that there is no conflict of interests.


  1. 1.
    Mathew J, Goswami GL, Ramakrishnan N, Naik NK (1999) Parametric studies on pulsed Nd:YAG laser cutting of carbon fibre reinforced plastic composites. J Mater Process Technol 89–90:198–203. CrossRefGoogle Scholar
  2. 2.
    Hu J, Xu H (2015) Pocket milling of carbon fiber-reinforced plastics using 532-nm nanosecond pulsed laser: an experimental investigation. J Compos Mater 50(20):2861–2869. CrossRefGoogle Scholar
  3. 3.
    Salama A, Li L, Whitehead PM (2016b) TEA CO2 laser machining of CFRP composite. Appl Phys A 122:497. CrossRefGoogle Scholar
  4. 4.
    Loumena C, Nguyen M, Lopez J, Kling R (2018) Potentials for lasers in CFRP production. Journal of Laser Applications 1026.
  5. 5.
    Herzog D, Schmidt-Lehr M, Canisius M, Oberlander M, Tasche J-P, Emmelmann C (2015) Laser cutting of carbon fibre reinforced plastics using a 30 kW fiber laser. J Laser Appl 27 Number:S28001–S28006. CrossRefGoogle Scholar
  6. 6.
    Rao S, Sethi A, Das AK, Mandal N, Kiran P, Ghosh R, Dixit AR, Mandal A. (2017) Fibre laser cutting of CFRP composites and optimization of process parameters through response surface methodology experiment preparation and condition. S Materials and Manufacturing Processes, Volume 32, Issue 14.
  7. 7.
    Ushida K, Inami W, Shimamura Y, Kawata Y (2012) Characteristic analysis of CFRP cutting with nanosecond pulsed laser. J Adv Res Phys 3(1):011211Google Scholar
  8. 8.
    Koenig W, Wulf C, Grass P, Willerchied H (1985) Machining of fiber reinforced plastics. Ann CIRP 34(2):537–548. CrossRefGoogle Scholar
  9. 9.
    Krishnaraj V, Prabukarthi A, Ramonathan A et al (2012) Optimization of machining parameters at high speed drilling of carbon fiber reinforces composites (CFRP) laminates. Compos Part B 43:1791–1799. CrossRefGoogle Scholar
  10. 10.
    Wahab MS, Rahim EA, Rahman NA, Uyub MF (2012) Laser cutting characteristic on the laminated carbon fiber reinforced plastic (CFRP) composite of aerospace structure panel. Adv Mater Res 576:503–506.
  11. 11.
    Negarestani R, Sundar M, Sheikh MA, Mativenga P, Li L, Li ZL, Chu PL, Khin CC, Zheng HY, G C L (2010) Numerical simulation of laser machining of carbon-fibre- reinforced composites. Proc. IMechE Part B: J. Engineering Manufacture 224:1017–1027. CrossRefGoogle Scholar
  12. 12.
    Negarestani R, Li L (2013) Fiber laser cutting of carbon fiber reinforced polymeric composites. Proc IMechE Part B, J Eng Manuf 227(12):1755–1766. CrossRefGoogle Scholar
  13. 13.
    El-Hofy M, Helmy MO, Escobar-Palafox G, Kerrigan K, Scaife R, El-Hofy H (2018) Abrasive water jet machining of multidirectional CFRP laminates. Procedia CIRP 68:535–540. CrossRefGoogle Scholar
  14. 14.
    Habib S, Okada A (2016) Influence of electrical discharge machining parameters on cutting parameters of carbon fiber-reinforced plastic. Mach Sci Technol 20(1):99–114. CrossRefGoogle Scholar
  15. 15.
    Habib SS (2014) Modeling of electrical discharge machining of CFRP using artificial neural network technique. JMMA 3(1):22–31Google Scholar
  16. 16.
    Helmy MO, El-Hofy MH, Hassan E-H (2018) Effect of cutting fluid delivery method on ultrasonic assisted edge trimming of multidirectional CFRP composites at different machining conditions. Procedia CIRP 68:450–455. CrossRefGoogle Scholar
  17. 17.
    De Iorio I, Leone C, Lopresto V, Pagano N (2010) Short pulse Nd:YAG laser cutting of CFRP sheet. World J Eng 7:289–290Google Scholar
  18. 18.
    Riveiro A, Quintero FL, Del Val J, Comesaña R, Boutinguiza M, Pou J (2012) Experimental study on the CO2 laser cutting of carbon fibre reinforced plastic composite. Compos A: Appl Sci Manuf 43(8):1400–1409. CrossRefGoogle Scholar
  19. 19.
    Salama A, Li L, Mativenga P, Sabli A (2016) High power picosecond drilling/machining of carbon fibre-reinforces polymer (CFRP) composites. Appl Phys A 122(73):1–11Google Scholar
  20. 20.
    Goeke A, Emmelmann C (2010) Influence of laser cutting parameters on CFRP part quality. Phys Procedia 5:253–258. Scholar
  21. 21.
    Cenna A, Mathew P (1997) Evaluation of cut quality of fiber reinforced plastics- a review. Int Jr Machine Tools Manuf 37:723–736. CrossRefGoogle Scholar
  22. 22.
    Li ZL, Zheng HY, Lim GC, Chu PL, Li L (2010) Study on UV laser machining quality of carbon fiber reinforced composites. Composites: Part A 41:1403–1408. CrossRefGoogle Scholar
  23. 23.
    Kalyyanasundaram D, Gururaja S, Prajakta P, Singh D (2018) Open hole fatigue testing of laser machined MD-CFRPs. Compos Part A 111:33–31CrossRefGoogle Scholar
  24. 24.
    Zaeh MF, Stock JW (2017) Peak stress reduction in the laser contouring of CFRP. CIRP Ann 66(1):249–252. CrossRefGoogle Scholar
  25. 25.
    Patel P, Gohil P, Rajpurohit S (2013) Laser machining of polymer matrix composites: scope, limitation and application. Int J Eng Trends Technol (IJETT) 4(6):2391–2399Google Scholar
  26. 26.
    El-Hofy H (2018) Fundamentals of machining processes: conventional and nonconventional processes, Third edn. CRC press, Taylor and Francis Ltd., Boca RatonGoogle Scholar
  27. 27.
    Dubey AK, Yadava V (2008) Laser beam machining- a review. Int J Mach Tools Manuf 48:609–628. CrossRefGoogle Scholar
  28. 28.
    Leone C, Genna S (2018) Heat affected zone in pulsed Nd:YAG laser cutting of CFRP. Compos Part B 140:174–182. CrossRefGoogle Scholar
  29. 29.
    Bluemel S, Jaeschke P, Wippo V, Bastick S, Stute U, Kracht D, Haferkamp H (2012) Laser machining of CFRP using high power fiber laser- investigations on the heat affected zone. 15th European conference on composite materials Venice Italy, 7 pGoogle Scholar
  30. 30.
    Leone C, Pagano N, Lopresto V, De Lorio I (2009) Solid state Nd:YAG laser cutting of CFRP sheet: influence of process parameters on kerf geometry and HAZ. 17th International Conference on Composite Materials (ICCM-17) Edinburgh, 10pGoogle Scholar
  31. 31.
    Patel RS (2016) Laser machining of CFRP. JEC composites magazine/No105, 46–49Google Scholar
  32. 32.
    Stock J, Zaeh MF, Conrad M (2012) Remote laser cutting of CFRP: improvements in the cut surface. Phys Procedia 39:161–170. CrossRefGoogle Scholar
  33. 33.
    Yuji S, Masahiro T, Tatsuya N, Kasuki N (2013) Experimental study of CFRP cutting with nanosecond lasers. Trans JWRI 42(1):23–26Google Scholar
  34. 34.
    Shyha I (2013) An Investigation into CO2 laser trimming of CFRP and GFRP composites. Proc Eng 63:931–937. CrossRefGoogle Scholar
  35. 35.
    Hirsch P, Bastick S, Jeashke P, van den Aker R, Geyer A, Zscheyge M, Michel P (2018) Effect of thermal properties on laser cutting of continuous glass and carbon fiber-reinforced polyamide 6 composites. Mach Sci Technol:1–18.
  36. 36.
    Woon JK, Yousuki k, Seigi K (2013) Ultra high speed laser cutting using a scanner head. Trans JWRI 22(2):9–14Google Scholar
  37. 37.
    Wahab MS, Rahman NA, Mohamed MAS, Rahim EA (2014) Optimization of laser cutting parameters on the laminated carbon fibre reinforced plastics (CFRP) composites using DoE technique. Appl Mech Mater 660:60–64. CrossRefGoogle Scholar
  38. 38.
    Herzog D, Schmidt-Lehr M, Oberlander M, Canisius M, Radek M, Emmelmann C (2016) Laser cutting of carbon fiber plastics of high thickness. Mater Des 92:742–749. CrossRefGoogle Scholar
  39. 39.
    Faas S, Freitag C, Boley S, Berger P, Weber R, Graf T (2017) Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam. Appl Phys A 123:156. CrossRefGoogle Scholar
  40. 40.
    Walter J, Hustedt M, Staehr R, Overmeyer L et al (2014) Laser cutting of carbon fiber reinforced plastics–investigation of hazardous process emissions. Phys Procedia 56:1153–1164. CrossRefGoogle Scholar
  41. 41.
    Riveiro A, Quintero F, Lusquiños F, del Val J, Comesaña R, Boutinguiza M, Pou J (2017) Laser cutting of carbon fiber composite materials. Proc Manuf 13:388–395Google Scholar
  42. 42.
    Onuseita V, Prieß T, Wiedenmann M, Freitag C, Faisst B, Giedl-Wagner R, Rettich T, Weber R, Middendorf P, Graf T (2015) Productive laser processing of CFRP. Lasers in Manufacturing Conference 9pGoogle Scholar
  43. 43.
    Sun D, Han F, Ying W, Jin C (2018) Surface integrity of water jet guided laser machining of CFRP. Procedia CIRP 71:71–74. CrossRefGoogle Scholar
  44. 44.
    Hira H, Tsuboi A (2011) Study on cutting of CFRP plate by fiber laser. 18th International Conference on Composite Materials, 4 PGoogle Scholar
  45. 45.
    Bluemel S, Bastick S, Staehr R, Jaeschke P, Suttmann O, Overmeyer L (2016) Laser cutting of CFRP with a fibre guided high power nanosecond laser source – influence of the optical fibre diameter on quality and efficiency. Phys Procedia 83:328–335. CrossRefGoogle Scholar
  46. 46.
    Pastras G, Fysikopoulos A, Stavropoulos P, Chryssolouris G (2014) An approach to modeling evaporation pulsed laser drilling and its energy efficiency. Int J Adv Manuf Technol 72:1227–1241. CrossRefGoogle Scholar
  47. 47.
    Onuseita V, Weber R, Wiedenmanna M, Freitaga C, Grafa T (2014) Efficient laser processing of CFRP. 8th international conference on photonic technologies LANE 4pGoogle Scholar
  48. 48.
    Bluemel S, Kuklik J, Staehr R, Jaeschke P, Suttmann O, Overmeyer L (2017) Time resolved analysis of nanosecond pulsed laser processing of carbon fiber reinforced plastics. J Laser Appl 29:022406. CrossRefGoogle Scholar
  49. 49.
    Niino H, Harada Y, Anzai K, Matsushita M, Furukawa K, Nishino M, Fujisaki A, Miyato T (2016) Laser cutting of carbon fiber reinforced plastics (CFRP and CFRTP) by IR fiber laser irradiation. JLMN-J Laser Micro/Nanoeng 11(1):104–110CrossRefGoogle Scholar
  50. 50.
    Xu H, Hu J (2017) Modeling of the material removal and heat affected zone formation in CFRP short pulsed laser processing. Appl Math Model 46:354–364. CrossRefGoogle Scholar
  51. 51.
    Salama A, Yan Y, Li L, Mativenga P, Whitehead D, Sabli A (2016c) Understanding the self-limiting effect in picosecond laser single and multiple parallel pass drilling/machining of CFRP composite and mild steel. Mater Des 107:461–469. CrossRefGoogle Scholar
  52. 52.
    Liu Y-C, Chen-Wu W, Song H-W, Huang C-G (2016) Interaction between pulsed infrared Laser and carbon fiber reinforced polymer composite laminates. Proc SPIE 10152:id. 101520X, 6p. CrossRefGoogle Scholar
  53. 53.
    Ohkubo T, Tsukamoto M, Sato Y (2014) Numerical simulation of laser beam cutting of carbon fiber reinforced plastics. Phys Procedia 56:1165–1170. CrossRefGoogle Scholar
  54. 54.
    Oberlander M, Bartsch K, Schulte C, Canisius M, Hergoss P, Herzog D, Emmelmann C (2017) Process monitoring of laser remote cutting of carbon fiber reinforced plastics by means of reflecting laser radiation. J Laser Appl 29(2):022009. CrossRefGoogle Scholar
  55. 55.
    Weber R, Hafner M, Michalowski A, Graf T (2011) Minimum damage in CFRP laser processing. Phys Procedia 12, Part B:302–307. CrossRefGoogle Scholar
  56. 56.
    Wolynski A, Herrmann T, Mucha P, Haloui H, L’huillier J (2011) Laser ablation of CFRP using picosecond laser pulses at different wavelengths from UV to IR. Phys Procedia 12:292–301. CrossRefGoogle Scholar
  57. 57.
    Stavropoulos P, Stournaras A, Salonitis K, Chryssolouris G (2010) Experimental and theoretical investigation of the ablation mechanisms during femtosecond laser machining. Int J Nanomanufacturing 6(1/2/3/4):55–65. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.AMRC with Boeing (University of Sheffield)Catcliffe RotherhamUK
  2. 2.Industrial Engineering and Systems Management Department (IESM), School of Innovative Design Engineering (IDE)Egypt-Japan University for Science and Technology (E-JUST)AlexandriaEgypt
  3. 3.Faculty of EngineeringOn Leave from Alexandria UniversityAlexandriaEgypt

Personalised recommendations