Advertisement

Multiple location constraints based industrial robot kinematic parameter calibration and accuracy assessment

  • Shanshan He
  • Lei Ma
  • Changya YanEmail author
  • Chen-Han Lee
  • Pengcheng Hu
ORIGINAL ARTICLE
  • 17 Downloads

Abstract

Kinematic calibration of industrial robots is an effective method of improving robot accuracy, and thus robot performance, especially when working with offline programming. The state-of-art industrial applications are lacking an easy-to-operate, reliable, and economic solution, hence forbidding frequent on-site calibration. This study presents a robot kinematic calibration method to improve the accuracy of six-axis industrial robots, using multiple location constraints. The robot parameters are calibrated by controlling a robot to reach the same location in different poses. Two standard devices and a non-contact equipment, non-bar device, are used for measurement. The proposed calibration process applies three identification methods and two compensation methods that can be mixed and matched, allowing flexible combinations of solutions to fit various industrial conditions. The proposed measurement/calibration system is economic, easy-to-operate, reliable, and suitable for express user-site industrial robot kinematic calibration, avoiding extensive production interruption. Actual experiments are carried out to verify the effects of joint zero calibration. These experiments demonstrate the proposed method’s ability to improve the accuracy of robots, and thus improve the robot work quality using offline programming.

Keywords

Industrial robot Accuracy Kinematic calibration Multiple location constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the support from colleagues Xi Yang and Minmin Wang.

Funding information

This study is supported by the National Natural Science Foundation of China (51575386).

References

  1. 1.
    Nubiola A (2014) Contribution to improving the accuracy of serial robots; École de technologie supérieureGoogle Scholar
  2. 2.
    Zhenhua W, Hui X, Guodong C et al (2014) A distance error based industrial robot kinematic calibration method. Ind Robot: An Int J 41(5):439–446CrossRefGoogle Scholar
  3. 3.
    Whitney D, Lozinski C, Rourke JM (1986) Industrial robot forward calibration method and results. J Dyn Syst Meas Control 108(1):1–8CrossRefGoogle Scholar
  4. 4.
    Nubiola A, Bonev IA (2013) Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robot Comput Integr Manuf 29(1):236–245CrossRefGoogle Scholar
  5. 5.
    Nubiola A, Bonev IA (2014) Absolute robot calibration with a single telescoping ballbar. Precis Eng 38(3):472–480CrossRefGoogle Scholar
  6. 6.
    Joubair A, Slamani M, Bonev IA (2013) Kinematic calibration of a five-bar planar parallel robot using all working modes. Robot Comput Integr Manuf 29(4):15–25CrossRefGoogle Scholar
  7. 7.
    Hage H, Bidaud P, Jardin N (2011) Practical consideration on the identification of the kinematic parameters of the Stäubli TX90 robot, Guanajuato, MexiqueGoogle Scholar
  8. 8.
    Joubair A, Bonev IA (2015) Kinematic calibration of a six-axis serial robot using distance and sphere constraints. Int J Adv Manuf Technol 77(1–4):515–523CrossRefGoogle Scholar
  9. 9.
    Ha I-C (2008) Kinematic parameter calibration method for industrial robot manipulator using the relative position. J Mech Sci Technol 22(6):1084CrossRefGoogle Scholar
  10. 10.
    Liu Y, Xi N, Zhao J et al (2009) Development and sensitivity analysis of a portable calibration system for joint offset of industrial robot. IEEE, St. Louis, pp 3838–3843Google Scholar
  11. 11.
    Bennett DJ, Hollerbach JM (1991) Autonomous calibration of single-loop closed kinematic chains formed by manipulators with passive endpoint constraints. IEEE Trans Robot Autom 7(5):597–606CrossRefGoogle Scholar
  12. 12.
    Chen H, Fuhlbrigge T, Choi S et al (2008) Practical industrial robot zero offset calibration. IEEE, Arlington, pp 516–521Google Scholar
  13. 13.
    Conrad KL, Shiakolas PS, Yih T (2000) Robotic calibration issues: Accuracy, repeatability and calibration. Rio, Patras, GreeceGoogle Scholar
  14. 14.
    Denhavit J (1955) A kinematic notation for lower-pair mechanisms based on matrices. ASME J Appl Mech 22(2):215–221MathSciNetGoogle Scholar
  15. 15.
    Hayati S, Tso K, Roston G (1988) Robot geometry calibration. IEEE, Philadelphia, pp 947–951Google Scholar
  16. 16.
    Švaco M, Šekoranja B, Šuligoj F et al (2014) Calibration of an industrial robot using a stereo vision system. Procedia Eng 69(1):459–463CrossRefGoogle Scholar
  17. 17.
    Joubair A, Slamani M, Bonev IA (2012) Kinematic calibration of a 3-DOF planar parallel robot. Ind Robot: An Int J 39(4):392–400CrossRefGoogle Scholar
  18. 18.
    Press W H, Teukolsky S A, Vetterling W T, et al. (1987) Numerical recipes: the art of scientific computing 3rd edition. J Anim Ecol, 56(1): 120–122CrossRefGoogle Scholar
  19. 19.
    Hollerbach JM, Wampler CW (1996) The calibration index and taxonomy for robot kinematic calibration methods. Int J Robot Res 15(6):573–591CrossRefGoogle Scholar
  20. 20.
    Qi F, Ping XL, Liu J et al (2014) The parameter identification and error compensation of robot based on DynaCal system. Appl Mech Mater 701-702(1):788–792CrossRefGoogle Scholar
  21. 21.
    Jywea W, Hsu TH, Liu CH (2012) Non-bar, an optical calibration system for five-axis CNC machine tools. Int J Mach Tool Manu 59(8):16–23CrossRefGoogle Scholar
  22. 22.
    Craig JJ 2005 Introduction to robotics: Mechanics and control. Pearson Education, IncGoogle Scholar
  23. 23.
    Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinzbMATHGoogle Scholar
  24. 24.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(1):308–313MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Shanshan He
    • 1
  • Lei Ma
    • 1
  • Changya Yan
    • 1
    Email author
  • Chen-Han Lee
    • 1
  • Pengcheng Hu
    • 2
  1. 1.Manufacturing Intelligence Engineering Research CenterWuhan Institute of TechnologyWuhanChina
  2. 2.School of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations