Advertisement

Two-dimensional thermal error compensation modeling for worktable of CNC machine tools

  • Xinyuan Wei
  • Enming MiaoEmail author
  • Hui Liu
  • Shanlin Liu
  • Suxin Chen
ORIGINAL ARTICLE

Abstract

The conventional thermal error compensation for computer numerical control machine tools in ISO 230-3:2007 is based on a single positioned point on a worktable; this guideline ignores the thermal error differences of different locations across an entire worktable. As a result, a reduced compensation effect is achieved for the whole worktable, although the single-point compensation model generally provides high prediction accuracy. The 2D thermal error compensation method, which can greatly improve the compensation effect of the worktable, is proposed in this study. This method builds a 2D thermal error map model parallel to the worktable at each time point. The thermal error at any position on the workbench can be predicted accurately. Thus, this compensation method can significantly reduce the influence of thermal error differences on the compensation effect across the whole worktable. The thermal error prediction results and compensated experimental results show that the compensation effect of this new method is better than that of the conventional single-point method for the whole worktable.

Keywords

CNC machine worktable 2D thermal error map model Least squares surface modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This work is supported by the Key Project of the National Natural Science Fund of China (grant No. 51490660/51490661) and the National Natural Science Foundation of China (grant No. 51175142/E051102).

Supplementary material

ESM 1

(WMV 2309 kb)

References

  1. 1.
    Mayr J, Jedrzejewski J, Uhlmann E, Donmez A, Knapp W, Hartig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Wurz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791CrossRefGoogle Scholar
  2. 2.
    Weck M, McKeown P, Bonse R, Herbst U (1995) Reduction and compensation of thermal errors in machine tools. CIRP Ann Manuf Technol 44(2):589–598CrossRefGoogle Scholar
  3. 3.
    Bryan JB (1990) International status of thermal error research. Ann CIRP 39(2):645–656CrossRefGoogle Scholar
  4. 4.
    Aronson RB (1996) War against thermal expansion. Manuf Eng 116(6):45–50Google Scholar
  5. 5.
    Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review part II: thermal errors. Int J Mach Tool Manu 40(9):1257–1284CrossRefGoogle Scholar
  6. 6.
    Yang J, Yuan J, Ni J (1999) Thermal error mode analysis and robust modeling for error compensation on a CNC turning center. Int J Mach Tool Manu 39(9):1367–1381CrossRefGoogle Scholar
  7. 7.
    Miao E, Gong Y, Niu P, Ji C, Chen H (2013) Robustness of thermal error compensation modeling models of CNC machine tools. Int J Adv Manuf Technol 69(9):2593–2603CrossRefGoogle Scholar
  8. 8.
    IS0 230-3:2001 (2001) Test code for machine tools—part 3:determination of thermal effects. TC 39, SwitzerlandGoogle Scholar
  9. 9.
    Abdulshahed AM, Longstaff AP, Fletcher S, Myers A (2014) Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera. Appl Math Model 39(7):1837–1852CrossRefGoogle Scholar
  10. 10.
    Lee JH, Yang SH (2002) Statistical optimization and assessment of a thermal error model for CNC machine tools. Int J Mach Tool Manu 42(1):147–155CrossRefGoogle Scholar
  11. 11.
    Miao EM, Liu Y, Liu H, Gao Z, Li W (2015) Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool. Int J Mach Tool Manu 97:50–59CrossRefGoogle Scholar
  12. 12.
    En-ming M, Ya-yun G, Lian-chun D, Ji-chao M (2014) Temperature-sensitive point selection of thermal error model of CNC machining center. Int J Adv Manuf Technol 74(5–8):681–691CrossRefGoogle Scholar
  13. 13.
    Liu H, Miao EM, Wei XY, Zhuang XD (2017) Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm. Int J Mach Tool Manu 113:35–48Google Scholar
  14. 14.
    Zhang T, Ye W, Shan Y (2016) Application of sliced inverse regression with fuzzy clustering for thermal error modeling of CNC machine tool. Int J Adv Manuf Technol 85(9–12):2761–2771CrossRefGoogle Scholar
  15. 15.
    Liu Q, Yan J, Pham DT, Zhou Z, Xu W, Wei Q, Ji C (2016) Identification and optimal selection of temperature-sensitive measuring points of thermal error compensation on a heavy-duty machine tool. Int J Adv Manuf Technol 85(1–4):345–353CrossRefGoogle Scholar
  16. 16.
    Zou H, Wang B (2017) Thermal effect on the dynamic error of a high-precision worktable. Arch Civ Mech Eng 17(2):336–343CrossRefGoogle Scholar
  17. 17.
    Zhang C (2015) Model of thermal error compensation of large size worktable for machine tools based on piecewise fitting. J Mech Eng 51(3):45–50CrossRefGoogle Scholar
  18. 18.
    Ibaraki S, Blaser P, Shimoike M, Takayama N, Nakaminami M, Ido Y (2016) Measurement of thermal influence on a two-dimensional motion trajectory using a tracking interferometer. CIRP Ann Manuf Technol 65(1):483–486CrossRefGoogle Scholar
  19. 19.
    Li ET, Zhang GX, Zeng H (2009) Algorithm of surface fitting research based on least-squares methods. J Hangzhou Dianzi UnivGoogle Scholar
  20. 20.
    Cui GW, Lu J, Gu YF, Gao D, Wang HC, Li CC (2011) Research on real-time synthetic error compensation principle for CNC machine tool. Adv Mater Res 314-316:2454–2457CrossRefGoogle Scholar
  21. 21.
    Luo YZ, Gong XY (2004) An algorithm based on bicubic B-spline surface interpolation for free surface design[J]. Spat Struct 10(2):30–34. (in Chinese)Google Scholar
  22. 22.
    Risa NA (1995) Cubic B-spline interpolation surface and its realization. Mini Micro Syst 03:23–28Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Xinyuan Wei
    • 1
  • Enming Miao
    • 2
    Email author
  • Hui Liu
    • 1
  • Shanlin Liu
    • 1
  • Suxin Chen
    • 3
  1. 1.School of Instrument Science and Opto-electronics EngineeringHefei University of TechnologyHefeiChina
  2. 2.School of Mechanical EngineeringChongqing University of TechnologyChongqingChina
  3. 3.School of Mechanical EngineeringHefei University of TechnologyHefeiChina

Personalised recommendations