Advertisement

A new contouring error estimation for the high form accuracy of a multi-axis CNC machine tool

  • Jing Zhang
  • Jiexiong Ding
  • Qingzhao Li
  • Zhong JiangEmail author
  • Qicheng Ding
  • Li Du
  • Wei Wang
ORIGINAL ARTICLE
  • 76 Downloads

Abstract

The evaluation of contouring error is important for multi-axis CNC machines because the tolerance specifications of manufactured parts are directly affected by contouring error. One of the fundamental quality inspections to verify that a manufactured part meets the expected tolerance is via form error evaluations. However, the existing estimation methods of contouring error are based on the position tolerance requirements. To meet the form tolerance requirements for the parts, this paper focuses on developing a high-accuracy estimation method of contouring error that is not related to a datum (ND-contouring error). In the proposed estimation method, at first, the minimum zone tolerance (MZT) method is used to transform the ideal tool tip path to match the actual one. Subsequently, by comparing the position and orientation between the actual point and the nearest point on the transformed ideal tool path, the ND-contouring error and orientation contouring error of the tool can be estimated, respectively. In addition, the difference between the proposed estimation method and previous evaluation methods is comparatively analyzed. Finally, simulations and experiments are conducted by applying the S-shaped and B-shaped machining trajectories, respectively, and the results all verify the estimation accuracy of the ND-contouring error estimation method. By adoption of compensation based on the ND-contouring error estimation, the contouring error could be significantly reduced, which will improve the quality of parts.

Keywords

Multi-axis CNC machine tools Contouring error Datum Form error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This work is supported by the National Key Scientific and Technological Project (Grant No. 2015ZX04001002).

References

  1. 1.
    Erkorkmaz K, Altintas Y (2001) High speed CNC system design. Part III: high speed tracking and contouring control of feed drives. Int J Mach Tools Manuf 41(11):1637–1658CrossRefGoogle Scholar
  2. 2.
    Huo F, Poo AN (2013) Precision contouring control of machine tools. Int J Adv Manuf Technol 64(1–4):319–333CrossRefGoogle Scholar
  3. 3.
    Jia ZY, Ma JW, Song DN, Wang FJ, Liu W (2018) A review of contouring-error reduction method in multi-axis CNC machining. Int J Mach Tools Manuf 125:34–54CrossRefGoogle Scholar
  4. 4.
    Tung ED, Tomizuka M (1993) Feedforward tracking controller design based on the identification of low frequency dynamics. J Dyn Syst Meas Control 115(3):348–356CrossRefzbMATHGoogle Scholar
  5. 5.
    Ruderman M (2014) Tracking control of motor drives using feedforward friction observer. IEEE Trans Ind Electron 61(7):3727–3735CrossRefGoogle Scholar
  6. 6.
    Tomizuka M (1987) Zero phase error tracking algorithm for digital control. J Dyn Syst Meas Control 109(1):65–68CrossRefzbMATHGoogle Scholar
  7. 7.
    Altintas Y, Erkorkmaz K, Zhu WH (2000) Sliding mode controller design for high speed feed drives. CIRP Ann Manuf Technol 49:265–270CrossRefGoogle Scholar
  8. 8.
    Ramesh R, Mannan MA, Poo AN (2005) Tracking and contour error control in CNC servo systems. Int J Mach Tools Manuf 45(3):301–326CrossRefGoogle Scholar
  9. 9.
    Koren Y (1980) Cross-coupled biaxial computer control for manufacturing systems. J Dyn Syst Meas Control 102:265–272CrossRefzbMATHGoogle Scholar
  10. 10.
    Yang J, Zhang HT, Ding H (2017) Contouring error control of the tool center point function for five-axis machine tools based on model predictive control. Int J Adv Manuf Technol 88(9–12):2909–2919CrossRefGoogle Scholar
  11. 11.
    Zhang D, Chen Y, Chen Y (2016) Iterative pre-compensation scheme of tracking error for contouring error reduction. Int J Adv Manuf Technol 87(9–12):3279–3288CrossRefGoogle Scholar
  12. 12.
    Lo C, Chung C (1999) Tangential-contouring controller for biaxial motion control. J Dyn Syst Meas Control-Trans ASME 121:126–129Google Scholar
  13. 13.
    Yang J, Li Z (2011) A novel contour error estimation for position loop-based cross-coupled control. IEEE-ASME Trans Mechatron 16(4):643–655Google Scholar
  14. 14.
    Lou Y, Meng H, Yang JZ, Li ZX, Gao J, Chen X (2014) Task polar coordinate frame-based contouring control of biaxial systems. IEEE Trans Ind Electron 61(7):3490–3501CrossRefGoogle Scholar
  15. 15.
    Liu W, Sun Y, Yuan X, Chen M (2017) A new approach to the pre-compensation of contour errorsfor three-axis machine tools using an adaptive cross-coupled controller. Int J Adv Manuf Technol 90(9–12):3711–3725CrossRefGoogle Scholar
  16. 16.
    Hu C, Yao B, Wang Q (2011) Global task coordinate frame-based contouring control of linear-motor-driven biaxial systems with accurate parameter estimations. IEEE Trans Ind Electron 58(11):5195–5205CrossRefGoogle Scholar
  17. 17.
    Li X, Zhao H, Zhao X, Ding H (2016) Dual sliding mode contouring control with high accuracy contour error estimation for five-axis CNC machine tools. Int J Mach Tools Manuf 108:74–82CrossRefGoogle Scholar
  18. 18.
    Yang J, Ding H, Zhao H, Yan S (2016) A generalized online estimation algorithm of multi-axis contouring errors for CNC machine tools with rotary axes. Int J Adv Manuf Technol 84(5–8):1239–1251Google Scholar
  19. 19.
    Yang M, Yang J, Ding H (2018) A high accuracy on-line estimation algorithm of five-axis contouring errors based on three-point arc approximation. Int J Mach Tools Manuf 130–131:73–84CrossRefGoogle Scholar
  20. 20.
    Pi S, Liu Q, Liu Q (2018) A novel dynamic contour error estimation and control in high-speed CNC. Int J Adv Manuf Technol 96(1433–3015):547–560CrossRefGoogle Scholar
  21. 21.
    Rossi A, Lanzetta M (2013) Optimal blind sampling strategy for minimum zone roundness evaluation by metaheuristics. Precis Eng 37(2):241–247CrossRefGoogle Scholar
  22. 22.
    International Standards Organization (ISO) (2012) ISO 1101-18: geometrical product specification (GPS) ---geometrical tolerances --- tolerances of form, orientation, location and run-out, Part 18: definitions of geometrical tolerancesGoogle Scholar
  23. 23.
    Zhang Z (1994) Iterative point matching for registration of free-form curves and surfaces. Int J Comput Vis 13(2):119–152CrossRefGoogle Scholar
  24. 24.
    Yu DP, Hong GS, Wong YS (2012) Profile error compensation in fast tool servo diamond turning of micro-structured surfaces. Int J Mach Tools Manuf 52(1):13–23CrossRefGoogle Scholar
  25. 25.
    Zhang X, Jiang X, Scott PJ (2011) A reliable method of minimum zone evaluation of cylindricity and conicity from coordinate measurement data. Precis Eng 35(3):484–489CrossRefGoogle Scholar
  26. 26.
    The American society of mechanical engineers (ASME) (2012) ASME Y 14.4.1M-2012: digital product definition data practicesGoogle Scholar
  27. 27.
    Lin MT, Tsai MS, Yau HT (2007) Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm. Int J Mach Tools Manuf 47(15):2246–2262CrossRefGoogle Scholar
  28. 28.
    Zhang XT, Song Z (2012) An iterative feedrate optimization method for real-time NURBS interpolator. Int J Adv Manuf Technol 62(9–12):1273–1280CrossRefGoogle Scholar
  29. 29.
    Zhang K, Yuan CM, Gao XS (2013) Efficient algorithm for time-optimal feedrate planning and smoothing with confined chord error and acceleration. Int J Adv Manuf Technol 66(9–12):1685–1697CrossRefGoogle Scholar
  30. 30.
    Cheung CF, Li H, Kong L, Lee LB, To S (2006) Measuring ultra-precision freeform surfaces using a robust form characterization method. Meas Sci Technol 17(3):488–494CrossRefGoogle Scholar
  31. 31.
    Andolfatto L, Lavernhe S, Mayer JRR (2011) Evaluation of servo, geometric and dynamic error sources on five-axis high-speed machine tool. Int J Mach Tools Manuf 51(10–11):787–796CrossRefGoogle Scholar
  32. 32.
    Jiang Z, Ding JX, Song ZY, Du L, Wang W (2016) Modeling and simulation of surface morphology abnormality of ‘S’ test piece machined by five-axis CNC machine tool. Int J Adv Manuf Technol 85(9–12):2745–2759CrossRefGoogle Scholar
  33. 33.
    Wang W, Jiang Z, Tao W, Zhuang W (2015) A new test part to identify performance of five-axis machine tool—part I: geometrical and kinematic characteristics of S part. Int J Adv Manuf Technol 79(5–8):729–738CrossRefGoogle Scholar
  34. 34.
    Wang W, Jiang Z, Li Q, Tao W (2015) A new test part to identify performance of five-axis machine tool-part II validation of S part. Int J Adv Manuf Technol 79(5–8):739–756CrossRefGoogle Scholar
  35. 35.
    Yang S, Ghasemi AH, Lu X, Okwudire CE (2015) Pre-compensation of servo contour errors using a model predictive control framework. Int J Mach Tools Manuf 98:50–60CrossRefGoogle Scholar
  36. 36.
    Yang J, Altintas Y (2015) A generalized on-line estimation and control of five-axis contouring errors of CNC machine tools. Int J Mach Tools Manuf 88:9–23CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Jing Zhang
    • 1
  • Jiexiong Ding
    • 1
  • Qingzhao Li
    • 1
  • Zhong Jiang
    • 1
    Email author
  • Qicheng Ding
    • 1
  • Li Du
    • 1
  • Wei Wang
    • 1
  1. 1.School of Mechanical and Electrical EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations