Advertisement

Sensitivity study of hardness profile of 4340 steel disc hardened by induction according to machine parameters and geometrical factors

  • Mohamed Khalifa
  • Noureddine Barka
  • Jean Brousseau
  • Philippe Bocher
ORIGINAL ARTICLE
  • 32 Downloads

Abstract

An adequate induction heat treatment operation should always identify, previously, the probable temperature distribution and hardness profile behavior in specific regions of the treated component according to heating process parameters. This paper presents an analysis of the effects of some geometrical factor related to the component and the coil and machine parameters on temperature distribution and case depth of an AISI 4340 low-alloy steel disc heated by induction. A Comsol model was created, defined as a group of process parameters followed by a mesh study. A Matlab algorithm coupled to the simulation model was designed to handle a large number of simulations and export temperature profile data. The case depth is then interpolated from collected temperature data and a statistical analysis was developed to create the hardness prediction model. The experimental tests conducted under the same process parameters support the numerical model results and approve the simulation, the prediction modeling, and the statistical study.

Keywords

Induction heating Simulation Experimental validation Sensitive study 4340 steel disc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rudnev V, Loveless D, Cook R (2017) Manufacturing engineering and materials processing. In: Handbook of Induction Heating, 2nd edn. Boca Raton, CRC Press, Taylor & Francis Group xxi, 749 pagesGoogle Scholar
  2. 2.
    Guerrier P et al (2015) Three-dimensional numerical modeling of an induction heated injection molding tool with flow visualization. Int J Adv Manuf Technol 85(1–4):643–660Google Scholar
  3. 3.
    Guo X et al (2015) Numerical simulations and experiments on fabricating bend pipes by push bending with local induction-heating process. Int J Adv Manuf Technol 84(9–12):2689–2695Google Scholar
  4. 4.
    Han Y, Yu E-L, Zhao T-X (2016) Three-dimensional analysis of medium-frequency induction heating of steel pipes subject to motion factor. Int J Heat Mass Transf 101:452–460CrossRefGoogle Scholar
  5. 5.
    Hömberg D, Liu Q, Montalvo-Urquizo J, Nadolski D, Petzold T, Schmidt A, Schulz A (2016) Simulation of multi-frequency-induction-hardening including phase transitions and mechanical effects. Finite Elem Anal Des 121:86–100MathSciNetCrossRefGoogle Scholar
  6. 6.
    Achraf S et al (2016) Temperature history modelling and validation of fast induction hardening process. In: HES-16 heating by electromagnetic sources. U.d.S.d. Padova, Editor, PaduaGoogle Scholar
  7. 7.
    Barglik J, Smalcerz A, Przylucki R, Doležel I (2014) 3D modeling of induction hardening of gear wheels. J Comput Appl Math 270:231–240CrossRefGoogle Scholar
  8. 8.
    Munikamal T, Sundarraj S (2012) Modeling the case hardening of automotive components. Metall Mater Trans B 44(2):436–446CrossRefGoogle Scholar
  9. 9.
    Wen H, Han Y (2017) Study on mobile induction heating process of internal gear rings for wind power generation. Appl Therm Eng 112:507–515CrossRefGoogle Scholar
  10. 10.
    Barka N, Bocher P, Brousseau J (2013) Sensitivity study of hardness profile of 4340 specimen heated by induction process using axisymmetric modeling. Int J Adv Manuf Technol 69(9–12):2747–2756CrossRefGoogle Scholar
  11. 11.
    Kochure PG (2012) Mathematical modeling for selection of process parameters in induction hardening of EN8 D steel. IOSR Journal of Mechanical and Civil Engineering 1(2):28–32CrossRefGoogle Scholar
  12. 12.
    Barka N (2017) Study of the machine parameters effects on the case depths of 4340 spur gear heated by induction—2D model. Int J Adv Manuf Technol 93:1173–1181CrossRefGoogle Scholar
  13. 13.
    Candeo A, Ducassy C, Bocher P, Dughiero F (2011) Multiphysics modeling of induction hardening of ring gears for the aerospace industry. IEEE Trans Magn 47(5):918–921CrossRefGoogle Scholar
  14. 14.
    Huang M-S, Huang Y-L (2010) Effect of multi-layered induction coils on efficiency and uniformity of surface heating. Int J Heat Mass Transf 53(11–12):2414–2423CrossRefGoogle Scholar
  15. 15.
    Bae K-Y, Yang YS, Hyun CM, Cho SH (2008) Derivation of simplified formulas to predict deformations of plate in steel forming process with induction heating. Int J Mach Tools Manuf 48(15):1646–1652CrossRefGoogle Scholar
  16. 16.
    Barka N, Chebak A, el Ouafi A, Jahazi M, Menou A (2014) A new approach in optimizing the induction heating process using flux concentrators: application to 4340 steel spur gear. J Mater Eng Perform 23(9):3092–3099CrossRefGoogle Scholar
  17. 17.
    Kristoffersen H, Vomacka P (2001) Influence of process parameters for induction hardening on residual stresses. Mater Des 22:637–644CrossRefGoogle Scholar
  18. 18.
    Besserer H-B, Dalinger A, Rodman D, Nürnberger F, Hildenbrand P, Merklein M, Maier HJ (2016) Induction heat treatment of sheet-bulk metal-formed parts assisted by water-air spray cooling. Steel Res Int 87(9):1220–1227CrossRefGoogle Scholar
  19. 19.
    Dmytro R et al (2012) Investigation of the surface residual stresses in spray cooled induction hardened gearwheels. Int J Mater Res 103(1):73–79CrossRefGoogle Scholar
  20. 20.
    Kochure PG, Nandurkar KN (2012) Application of taguchi methodology in selection of process parameters for induction hardening of EN8 D Steel. International Journal of Modern Engineering Research (IJMER) 2(5):3736–3742Google Scholar
  21. 21.
    Jin J (2002) The finite element method in electromagnetics. John Wiley & Sons Inc., New YorkzbMATHGoogle Scholar
  22. 22.
    Barka N, el Ouafi A, Bocher P, Brousseau J (2013) Explorative study and prediction of overtempering region of disc heated by induction process using 2D axisymmetric model and experimental tests. Adv Mater Res 658:259–265CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018
corrected publication 2018

Authors and Affiliations

  • Mohamed Khalifa
    • 1
  • Noureddine Barka
    • 1
  • Jean Brousseau
    • 1
  • Philippe Bocher
    • 2
  1. 1.Département de mathématiques, d’informatique et de génieUniversité du Québec à RimouskiRimouskiCanada
  2. 2.Département de génie mécaniqueÉcole de technologie supérieureMontréalCanada

Personalised recommendations