Advertisement

A review on machining and optimization of particle-reinforced metal matrix composites

  • Jianguang Li
  • Rashid Ali LaghariEmail author
ORIGINAL ARTICLE
  • 76 Downloads

Abstract

This paper offers a comprehensive literature review of the conventional machining processes along with optimization methods used in metal matrix composites (MMCs), such as turning, milling, drilling, and grinding machining processes. The tool wear mechanism and machinability of MMCs along with surface quality are discussed in the number of different manufacturing processes and examined thoroughly. Additionally, the manufacturing of MMC products through nonconventional machining processes such as electrical discharge machining (EDM), wire electrical discharge machining (WEDM), laser machining, electrochemical machining, ultra- sonic machining (USM), and high-speed machining are investigated and considered, in connection with MMC processing are discussed, as alternatives to the aforementioned processes. Moreover, this review focuses on the modeling of the machining process, finite element modeling, and simulation and optimization of soft computing methods in MMCs. The study will emphasize on the most generally used methods, namely, response surface methodology, artificial neural network, Taguchi method, and fuzzy logic as soft computing optimization methods. Finally, the comprehensive open issues and conclusions have drawn on the machining and optimization of particle-reinforced MMCs.

Keywords

Al-MMCs Conventional machining Unconventional machining Tool wear Machinability Modeling of machining process Optimization techniques Finite element modeling and simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nicholls CJ, Boswell B, Davies IJ, Islam MN (2016) Review of machining metal matrix composites. Int J Adv Manuf Technol 90:2429–2441.  https://doi.org/10.1007/s00170-016-9558-4 Google Scholar
  2. 2.
    Mukhopadhyay CK, Jayakumar T, Raj B, Venugopal S (2012) Statistical analysis of acoustic emission signals generated during turning of a metal matrix composite. J Braz Soc Mech Sci Eng 34:145–154Google Scholar
  3. 3.
    Zhu Y, Kishawy HA (2005) Influence of alumina particles on the mechanics of machining metal matrix composites. Int J Mach Tools Manuf 45:389–398.  https://doi.org/10.1016/j.ijmachtools.2004.09.013 Google Scholar
  4. 4.
    Wang BB, Xie LJ, Wang X Bin, Chen XLBT-MSF (2014) Simulation studies of the cutting process on SiCp/Al composites with different volume fraction of reinforced SiC particles. 801:321–326 .  https://doi.org/10.4028/www.scientific.net/MSF.800-801.321
  5. 5.
    Dandekar CR, Shin YC (2009) Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites. Compos A Appl Sci Manuf 40:1231–1239.  https://doi.org/10.1016/j.compositesa.2009.05.017 Google Scholar
  6. 6.
    Shetty N, Shahabaz SM, Sharma SS, Shetty SD (2017) A review on finite element method for machining of composite materials. Compos Struct 176:790–802.  https://doi.org/10.1016/j.compstruct.2017.06.012 Google Scholar
  7. 7.
    Teng X, Chen W, Huo D, Shyha I, Lin C (2018) Comparison of cutting mechanism when machining micro and nano-particles reinforced SiC/Al metal matrix composites. Compos Struct 203:636–647.  https://doi.org/10.1016/j.compstruct.2018.07.076 Google Scholar
  8. 8.
    Chandrasekaran M, Devarasiddappa D (2014) Artificial neural network modeling for surface roughness prediction in cylindrical grinding of Al-SiCp metal matrix composites and ANOVA analysis. Adv Prod Eng Manag 9:59–70.  https://doi.org/10.14743/apem2014.2.176 Google Scholar
  9. 9.
    Hung NP, Zhong CH (1996) Fr ess g Cumulative tool wear in machining metal matrix composites. J Mater Process Technol 58(1):109–113Google Scholar
  10. 10.
    Bauri R, Yadav D (2017) Metal matrix composites by friction stir processing. Elsevier Inc.Google Scholar
  11. 11.
    Muthukrishnan N, Davim JP (2011) An investigation of the effect of work piece reinforcing percentage on the machinability of Al-SiC metal matrix composites. 3:15–24Google Scholar
  12. 12.
    Cronjäger, L. and Meister D (1992) Machining of fibre and particle-reinforced aluminium. 41:63–66Google Scholar
  13. 13.
    Paulo Davim J, Monteiro Baptista A (2000) Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminum. J Mater Process Technol 103:417–423.  https://doi.org/10.1016/S0924-0136(00)00495-7 Google Scholar
  14. 14.
    Durante S, Rutelli G, Rabezzana F (1997) Aluminum-based MMC machining with diamond-coated cutting tools. Surf Coat Technol 94–95:632–640.  https://doi.org/10.1016/S0257-8972(97)00521-5 Google Scholar
  15. 15.
    Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann Manuf Technol 59:717–739.  https://doi.org/10.1016/j.cirp.2010.05.010 Google Scholar
  16. 16.
    Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121.  https://doi.org/10.1016/j.ijmachtools.2012.01.006 Google Scholar
  17. 17.
    Das D, Kumar R, Kumar A, Kumar A (2018) Optimization of machining parameters and development of surface roughness models during turning Al-based metal matrix composite. Mater Today Proc 5:4431–4437.  https://doi.org/10.1016/j.matpr.2017.12.011 Google Scholar
  18. 18.
    Prasad BS, Prabha KA, Kumar PVSG (2017) Condition monitoring of turning process using infrared thermography technique – an experimental approach. Infrared Phys Technol 81:137–147.  https://doi.org/10.1016/j.infrared.2016.12.023 Google Scholar
  19. 19.
    Ghani JA, Rizal M, Nuawi MZ, Ghazali MJ, Haron CHC (2011) Monitoring online cutting tool wear using low-cost technique and user-friendly GUI. Wear 271:2619–2624.  https://doi.org/10.1016/j.wear.2011.01.038 Google Scholar
  20. 20.
    Tomac N, Tannessen K, Rasch FO (1992) Machinability of particulate aluminium matrix composites. CIRP Ann Manuf Technol 41:55–58.  https://doi.org/10.1016/S0007-8506(07)61151-2 Google Scholar
  21. 21.
    Tonshoff HK, Karpuschewski B (1999) Manufacturing of magnesium by turning and burnishing operations. Adv Techol Plast 1Google Scholar
  22. 22.
    Dabade UA, Jadhav MR (2016) Experimental study of surface integrity of Al/SiC particulate metal – matrix composites in hot machining. 41:914–919.  https://doi.org/10.1016/j.procir.2016.01.024
  23. 23.
    Ciftci I, Turker M (2014) Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites.  https://doi.org/10.1016/j.matdes.2003.09.019
  24. 24.
    Kılıckap E, Cakır O, Aksoy M, Inan A (2005) Study of tool wear and surface roughness in machining of homogenized SiC-p reinforced aluminium metal matrix composite. J Mater Process Technol 164-165:862–867Google Scholar
  25. 25.
    Bansal P, Upadhyay L (2013) Experimental investigations to study tool wear during turning of alumina reinforced aluminium composite. Procedia Eng 51:818–827.  https://doi.org/10.1016/j.proeng.2013.01.117 Google Scholar
  26. 26.
    Yanming Q, Zehua Z (2000) Tool wear and its mechanism for cutting SiC particle-reinforced aluminium matrix composites. 100:194–199Google Scholar
  27. 27.
    Davim JP (2009) Machining fundamentals and recent advances. SpringerGoogle Scholar
  28. 28.
    Davim JP (2011) Machining of metal matrix composites. Springer, LondonGoogle Scholar
  29. 29.
    Jani DV (2014) Machining of Sic – metal matrix composite (MMC) by polycrystalline diamond (PCD) tools and effect on quality of surface by changing machining parameters. 2:106–108Google Scholar
  30. 30.
    Muthukrishnan N, Murugan M, Prahlada Rao K (2008) Machinability issues in turning of Al-SiC (10p) metal matrix composites. Int J Adv Manuf Technol 39:211–218.  https://doi.org/10.1007/s00170-007-1220-8 Google Scholar
  31. 31.
    Ozben T, Kilickap E (2007) Orhan C, Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. 8:220–225.  https://doi.org/10.1016/j.jmatprotec.2007.06.082
  32. 32.
    Turgut Y, Çinici H, Ismail Ş, Findik T (2011) Study of cutting force and surface roughness in milling of Al/Sic metal matrix composites. Sci Res Essays 6:2056–2062.  https://doi.org/10.5897/SRE10.496 Google Scholar
  33. 33.
    Arokiadass R, Palaniradja K, Alagumoorthi N (2011) Surface roughness prediction model in end milling of Al / SiC p MMC by carbide tools. 3:78–87Google Scholar
  34. 34.
    Arokiadass R, Palaniradja K, Alagumoorthi N (2012) Prediction and optimization of end milling process parameters of cast aluminium based MMC. Trans Nonferrous Metals Soc China (Engl Ed) 22:1568–1574.  https://doi.org/10.1016/S1003-6326(11)61357-5 Google Scholar
  35. 35.
    Chandrasekaran H, Johansson J-O (1997) Influence of processing conditions and reinforcement on the surface quality of finish machined aluminium alloy matrix composites. CIRP Ann Manuf Technol 46:493–496.  https://doi.org/10.1016/S0007-8506(07)60873-7 Google Scholar
  36. 36.
    Songmene V Balazinski M (2001) Machining of graphiticSiC-reinforced aluminium metal matrix composites with diamond toolsGoogle Scholar
  37. 37.
    Suresh Kumar Reddy N, Kwang-Sup S, Yang M (2008) Experimental study of surface integrity during end milling of Al/SiC particulate metal-matrix composites. J Mater Process Technol 201:574–579.  https://doi.org/10.1016/j.jmatprotec.2007.11.280 Google Scholar
  38. 38.
    Markopoulos AP, Pressas IS, Papantoniou IG, et al Machining and machining modeling of metal matrix composites — a review. In Modern manufacturing engineering 99-14. Springer International PublishingGoogle Scholar
  39. 39.
    Davim JP (2010) Machining composite materials. ISTE-Wiley, LondonGoogle Scholar
  40. 40.
    Huang ST, Zhou L, Chen J, Xu LF (2012) Drilling of SiCp/Al metal matrix composites with polycrystalline diamond (PCD) tools. Mater Manuf Process 27:1090–1094.  https://doi.org/10.1080/10426914.2011.654152 Google Scholar
  41. 41.
    Rajmohan T, Palanikumar K, Kathirvel M (2012) Optimization of machining parameters in drilling hybrid aluminium metal matrix composites. Trans Nonferrous Met Soc China (Engl Ed) 22:1286–1297.  https://doi.org/10.1016/S1003-6326(11)61317-4 Google Scholar
  42. 42.
    Narutaki N (1996) Machining of MMC. 359–370Google Scholar
  43. 43.
    Songmene V, Balazinski M (1999) Machinability of graphitic metal matrix composites as a function of reinforcing particles. CIRP Ann Manuf Technol 48:77–80.  https://doi.org/10.1016/S0007-8506(07)63135-7 Google Scholar
  44. 44.
    Tosun G, Muratoglu M (2004) The drilling of an Al/SiCp metal-matrix composites. Part I: microstructure. Compos Sci Technol 64:299–308.  https://doi.org/10.1016/S0266-3538(03)00290-2 Google Scholar
  45. 45.
    Davim JP (2003) Study of drilling metal-matrix composites based on the Taguchi techniques. J Mater Process Technol 132:250–254.  https://doi.org/10.1016/S0924-0136(02)00935-4 Google Scholar
  46. 46.
    Davim JP, Monteiro Baptista A (2001) Cutting force, tool wear and surface finish in drilling metal matrix composites. Proc Inst Mech Eng Part E J Process Mech Eng 215:177–183Google Scholar
  47. 47.
    Davim JP, Conceição António C (2001) Optimal drilling of particulate metal matrix composites based on experimental and numerical procedures. Int J Mach Tools Manuf 41:21–31.  https://doi.org/10.1016/S0890-6955(00)00071-7 Google Scholar
  48. 48.
    Niknam SA, Kamalizadeh S, Asgari A, Balazinski M (2018) Turning titanium metal matrix composites (Ti-MMCs) with carbide and CBN inserts. Int J Adv Manuf Technol 97:253–265.  https://doi.org/10.1007/s00170-018-1926-9 Google Scholar
  49. 49.
    Monaghan J, O ‘reilly P (1992) The drilling of an A1/SiC metal-matrix composite. J Mater Process Technol 33:469–480Google Scholar
  50. 50.
    Thiagarajan C, Sivaramakrishnan R, Somasundaram S (2012) Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms. J Braz Soc Mech Sci Eng 34(1):32–40Google Scholar
  51. 51.
    Thiagarajan C, Sivaramakrishnan R, Somasundaram S (2011) Cylindrical grinding of SiC particles reinforced. ARPN J Eng Appl Sci 6:14–20Google Scholar
  52. 52.
    Monaghan J, O Reilly P (1992) The drilling of an Al/sic metal-matrix composite. J Mater Process Technol 33(4):469–480Google Scholar
  53. 53.
    Hwa Yan B, Tsai HC, Yuan Huang F, Chorng Lee L (2005) Examination of wire electrical discharge machining of Al2O3p/6061Al composites. Int J Mach Tools Manuf 45:251–259.  https://doi.org/10.1016/j.ijmachtools.2004.08.015 Google Scholar
  54. 54.
    Pramanik A, Zhang LC, Arsecularatne JA (2007) An FEM investigation into the behavior of metal matrix composites: tool–particle interaction during orthogonal cutting. Int J Mach Tools Manuf 47:1497–1506Google Scholar
  55. 55.
    Pramanik A (2014) Developments in the non-traditional machining of particle reinforced metal matrix composites. Int J Mach Tools Manuf 86:44–61.  https://doi.org/10.1016/j.ijmachtools.2014.07.003 Google Scholar
  56. 56.
    Garg RK, Singh KK, Sachdeva A, Sharma VS, Ojha K, Singh S (2010) Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int J Adv Manuf Technol 50:611–624.  https://doi.org/10.1007/s00170-010-2534-5 Google Scholar
  57. 57.
    Yadav RN, Yadava V (2013) Experimental study of erosion and abrasion based hybrid machining of hybrid metal matrix composite. Int J Precis Eng Manuf 14:1293–1299.  https://doi.org/10.1007/s12541-013-0176-x Google Scholar
  58. 58.
    Satishkumar D, Kanthababu M, Vajjiravelu V, Anburaj R, Sundarrajan NT, Arul H (2011) Investigation of wire electrical discharge machining characteristics of Al6063/SiCp composites. Int J Adv Manuf Technol 56:975–986.  https://doi.org/10.1007/s00170-011-3242-5 Google Scholar
  59. 59.
    Yan BH, Tsai HC, Huang f Y, Lee LC (2005) Examination of wire electrical discharge machining of Al 2 O 3 p/6061Al composites. Int J Mach Tools Manuf 45:251–259Google Scholar
  60. 60.
    Kumar SS, Thenappan V, Srinath G (2012) PCD cutting insert behavior on turning. In: International conference on thermal, material and mechanical Engineering. Singapore, pp 133–137Google Scholar
  61. 61.
    Persson H (2001) Machining guidelines of Al/Sic particulate MMC. MMC-assess-thematic network, vol 6, MMC-Assess ConsortiumGoogle Scholar
  62. 62.
    Srikanth P, Kumar CP (2013) Electrical discharge machining characteristics of aluminium metal matrix composites-a review. Int J Sci Res 4:1–15Google Scholar
  63. 63.
    Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300.  https://doi.org/10.1016/S0890-6955(03)00162-7 Google Scholar
  64. 64.
    Boothroyd G, Winston AK (1989) Non-conventional machining processes. Fundamentals of Machining and Machine Tools Marcel Dekker, Inc, New York, p 491Google Scholar
  65. 65.
    McGeough J A (1988) Advanced methods of machining. Springer Science & Business MediaGoogle Scholar
  66. 66.
    Rao PosinasettiNageswara (2000) Manufacturing technology: metal cutting and machine tools. Tata McGraw-Hill EducationGoogle Scholar
  67. 67.
    Tsai HC, Yan BH, Huang FY (2003) EDM performance of Cr/Cu-based composite electrodes. Int J Mach Tools Manuf 43:245–252.  https://doi.org/10.1016/S0890-6955(02)00238-9 Google Scholar
  68. 68.
    Velmurugan C, Subramanian R, Thirugnanam S, Ananadavel B (2012) Experimental investigations on machining characteristics of Al 6061 hybrid metal matrix composites processed by electrical discharge machining. Int J Eng Sci Technol 3:87–101.  https://doi.org/10.4314/ijest.v3i8.7 Google Scholar
  69. 69.
    Purohit R, Verma CS, Shekhar P (2012) Electric discharge machining of 7075Al-10 wt.% SiCp composites using rotary tube brass electrodes. Int J Eng Res Appl 2:411–423Google Scholar
  70. 70.
    Narayanan CS, Nadu T, Nadu T, Nadu T (2014) Optimization of electrical discharge machining parameters using artificial neural network with different electrodes. In 5th International & 26th All India Manufacturing Technology, Design and Research Conference AIMTDR: 12–15Google Scholar
  71. 71.
    Jameson E C (2001) Electrical discharge machining. Society of manufacturing engineersGoogle Scholar
  72. 72.
    Shandilya P, Jain PK, Jain NK (2011) Wire electro discharge machining of metal matrix composites materials. Daaam International Scientific Book 383–401Google Scholar
  73. 73.
    Rao P N (2013) Manufacturing technologies: metal cutting and machine tools. Tata McGraw-Hill Education: 2Google Scholar
  74. 74.
    Gore AS, Patil NG (2018) Wire electro discharge machining of metal matrix composites: a review. Procedia Manuf 20:41–52.  https://doi.org/10.1016/j.promfg.2018.02.006 Google Scholar
  75. 75.
    Pontevedra V (2018) A wire electro discharge machining of metal matrix composites: a review. Procedia Manuf 20:41–52.  https://doi.org/10.1016/j.promfg.2018.02.006 Google Scholar
  76. 76.
    Marigoudar RN, Sadashivappa K (2013) Effect of machining parameters on MRR and surface roughness in machining of ZA43/SiCp composite by WEDM. Int J Appl Sci Eng 11:317–330Google Scholar
  77. 77.
    Pramanik A (2014) Developments in the non-traditional machining of particle reinforced metal matrix composites. Int J Mach Tools Manuf 86:44–61.  https://doi.org/10.1016/j.ijmachtools.2014.07.003 Google Scholar
  78. 78.
    Rajurkar KP, Zhu D (1999) Improvement of electrochemical machining accuracy by using orbital electrode movement. CIRP Ann Manuf Technol 48:139–142Google Scholar
  79. 79.
    Senthilkumar C, Ganesan G, Karthikeyan R (2012) Electrochemical machining of Al/15% SiCp composites through a response surface methodology-based approach. Int J Mater Res 103:378–382Google Scholar
  80. 80.
    Senthilkumar C, Ganesan G, Karthikeyan R (2009) Study of electrochemical machining characteristics of Al/SiCp composites. Int J Adv Manuf Technol 43:256–263.  https://doi.org/10.1007/s00170-008-1704-1 Google Scholar
  81. 81.
    Kumar KLS, Sivasubramanian R, Kalaiselvan K (2009) Selection of optimum parameters in non conventional machining of metal matrix composite. 27:477–486.  https://doi.org/10.4152/pea.200904477
  82. 82.
    Ayyappan S, Kalaimathi M, Venkatachalam G (2015) Cost-tolerance prediction models for electrochemical machining of metal matrix composites. 35:299–307Google Scholar
  83. 83.
    Hong L, Vilar RM, Youming WANG (1997) Laser beam processing of a SiC particulate reinforced 6061 aluminium metal matrix composite. J Mater Sci 32:5545–5550Google Scholar
  84. 84.
    Manjoth S, Keshavamurthy R, Kumar GSP (2016) Optimization and analysis of laser beam machining parameters for Al7075-TiB 2 in-situ composite. IOP Conf Ser Mater Sci Eng 149:012013.  https://doi.org/10.1088/1757-899X/149/1/012013 Google Scholar
  85. 85.
    Müller F, Monaghan J (2000) Non-conventional machining of particle reinforced metal matrix composite. Int J Mach Tools Manuf 40:1351–1366.  https://doi.org/10.1016/S0924-0136(01)00941-4 Google Scholar
  86. 86.
    Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38:239–255Google Scholar
  87. 87.
    Zhong G, Xu J, Wu Y, Yang S (2015) Statistical analyses and regression modeling for influence of process parameters on material removal rate in ultrasonic machining. Technol Optim 6.  https://doi.org/10.4172/2229-8711.1000187
  88. 88.
    Mohanty S, Routara BC (2016) A review on machining of metal matrix composites using nanoparticle mixed dielectric in electro-discharge machining. Int J Automot Mech Eng 13:3518–3539.  https://doi.org/10.15282/ijame.13.2.2016.18.0290 Google Scholar
  89. 89.
    Lin ZWZG (2006) Ultrasonic assisted turning of an aluminium-based metal matrix composite. 1077–1081.  https://doi.org/10.1007/s00170-004-2320-3
  90. 90.
    Pasko R, Przybylski L, Slodki B (2002) High speed machining (HSM)—the effective way of modern cutting. In Proceedings of 7th Daaam International Workshop CA Systems and Technologies 72–79Google Scholar
  91. 91.
    Bartarya G, Choudhury SK (2012) State of the art in hard turning. Int J Mach Tools Manuf 53:1–14.  https://doi.org/10.1016/j.ijmachtools.2011.08.019 Google Scholar
  92. 92.
    Collins JL (2001) High speed dry machining of MMCs with diamond tools J. L Collins De Beers Industrial Diamonds (UK) Ltd, Charters, Ascot, Berkshire, SL5 9PX, UK. 2Google Scholar
  93. 93.
    Liu C, Ding W, Yu T, Yang C (2018) Materials removal mechanism in high-speed grinding of particulate reinforced titanium matrix composites. Precis Eng 51:68–77.  https://doi.org/10.1016/j.precisioneng.2017.07.012 Google Scholar
  94. 94.
    Jadhav MR, Dabade UA (2016) Multi-objective optimization in hot machining of Al/SiCp metal matrix composites. IOP Conf Ser Mater Sci Eng 114:012122.  https://doi.org/10.1088/1757-899X/114/1/012122 Google Scholar
  95. 95.
    Tan ZH, Pang BJ, Gai BZ, Wu GH, Jia B (2007) The dynamic mechanical response of SiC particulate reinforced 2024 aluminum matrix composites. Mater Lett 61:4606–4609.  https://doi.org/10.1016/j.matlet.2007.02.069 Google Scholar
  96. 96.
    Huang S, Guo L, He H, Xu L (2018) Study on characteristics of SiCp/Al composites during high-speed milling with different particle size of PCD tools. Int J Adv Manuf Technol 95:2269–2279.  https://doi.org/10.1007/s00170-017-1350-6 Google Scholar
  97. 97.
    Sharma VS, Dhiman S, Sharma RSSK (2008) Estimation of cutting forces and surface roughness for hard turning using neural networks.  https://doi.org/10.1007/s10845-008-0097-1
  98. 98.
    Brun MK, Lee M, Gorsler F (1985) Wear characteristics of various hard materials for machining sic-reinforced aluminum alloy. Wear 104:21–29.  https://doi.org/10.1016/0043-1648(85)90243-1 Google Scholar
  99. 99.
    Wang T, Xie L, Wang X, Ding Z (2015) PCD tool performance in high-speed milling of high volume fraction SiCp/Al composites. Int J Adv Manuf Technol 78:1445–1453.  https://doi.org/10.1007/s00170-014-6740-4 Google Scholar
  100. 100.
    Zhou L, Cui C, Zhang PF, Ma ZY (2017) Finite element and experimental analysis of machinability during machining of high-volume fraction SiCp/Al composites. Int J Adv Manuf Technol 91:1935–1944.  https://doi.org/10.1007/s00170-016-9933-1 Google Scholar
  101. 101.
    Schneider G (2002) Cutting tool applications. Nelson PubGoogle Scholar
  102. 102.
    Kandpal BC, Kumar J, Singh H (2018) Optimisation of process parameters of electrical discharge machining of fabricated AA 6061/10% Al2 O3 aluminium based metal matrix composite. 5:4413–4420.  https://doi.org/10.1016/j.matpr.2017.12.009
  103. 103.
    Pontevedra V, Kar C, Surekha B, et al (2018) Study of influence of process parameters in electric discharge machining of aluminum – red mud metal matrix composite Machining of Aluminum Metal Matr.  https://doi.org/10.1016/j.promfg.2018.02.057
  104. 104.
    Huang S, Yu X, Wang F, Xu L (2015) A study on chip shape and chip-forming mechanism in grinding of high volume fraction SiC particle reinforced Al-matrix composites. Int J Adv Manuf Technol 80:1927–1932.  https://doi.org/10.1007/s00170-015-7138-7 Google Scholar
  105. 105.
    Di Ilio A, Paoletti A (2012) Machinability aspects of metal matrix composites. In: Davim JP(ed) Machining of metal matrix composites. Springer, LondonGoogle Scholar
  106. 106.
    Weinert K, König W (1993) A consideration of tool wear mechanism when machining metal matrix composites (MMC). CIRP Ann Manuf Technol 42:95–98.  https://doi.org/10.1016/S0007-8506(07)62400-7 Google Scholar
  107. 107.
    Thamizhmanii S, Hasan S (2008) Investigating flank wear and cutting force on hard steels by CBN cutting tool by turning. III: In: Proceedings of the world congress on engineering, London, UKGoogle Scholar
  108. 108.
    Jacob S, Shajin S, Gnanavel C (2017) Effect of turning parameters on aluminium metal matrix composites -a review. In: IOP Conf. Ser.: Mater. Sci. Eng. 225 012276Google Scholar
  109. 109.
    Cook MW (1998) Machining MMC engineering components with polycrystalline diamond and diamond grinding. Mater Sci Technol 14:892–895.  https://doi.org/10.1179/mst.1998.14.9-10.892 Google Scholar
  110. 110.
    Kishawy HA, Kannan S, Balazinski M (2004) An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann Manuf Technol 53:91–94.  https://doi.org/10.1016/S0007-8506(07)60652-0 Google Scholar
  111. 111.
    Hung NP, Loh NL, Xu ZM (1996) Cumulative tool wear in machining metal matrix composites. Part II: machinability. J Mater Process Technol 58:114–120.  https://doi.org/10.1016/0924-0136(95)02115-9 Google Scholar
  112. 112.
    Hung NP, Boey FYC, Khor KA, Phua YS, Lee HF (1996) Machinability of aluminum alloys reinforced with silicon carbide particulates. J Mater Process Technol 56:966–977.  https://doi.org/10.1016/0924-0136(95)01908-1 Google Scholar
  113. 113.
    Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tools Manuf 46:1795–1803.  https://doi.org/10.1016/j.ijmachtools.2005.11.012 Google Scholar
  114. 114.
    Li X (2001) Seah WKH, Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites. 247:161–171Google Scholar
  115. 115.
    Dabade UA, Joshi SS (2009) Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites. J Mater Process Technol 209:4704–4710.  https://doi.org/10.1016/j.jmatprotec.2008.10.057 Google Scholar
  116. 116.
    Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tools Manuf 48:1613–1625.  https://doi.org/10.1016/j.ijmachtools.2008.07.008 Google Scholar
  117. 117.
    Tevatia A, Kumar S (2015) Modified shear lag theory based fatigue crack growth life prediction model for short-fiber reinforced metal matrix composites. Int J Fatigue 70:123–129.  https://doi.org/10.1016/j.ijfatigue.2014.09.004 Google Scholar
  118. 118.
    Zhou L, Wang Y, Ma ZY, Yu XL (2014) Finite element and experimental studies of the formation mechanism of edge defects during machining of SiCp/Al composites. Int J Mach Tools Manuf 84:9–16.  https://doi.org/10.1016/j.ijmachtools.2014.03.003 Google Scholar
  119. 119.
    Prabu SB, Karunamoorthy L, Kandasami GS (2004) A finite element analysis study of micromechanical interfacial characteristics of metal matrix composites. J Mater Process Technol 153–154:992–997.  https://doi.org/10.1016/j.jmatprotec.2004.04.157 Google Scholar
  120. 120.
    Pramanik A, Zhang LC, Arsecularatne JA (2008) Deformation mechanisms of MMCs under indentation. Compos Sci Technol 68:1304–1312.  https://doi.org/10.1016/j.compscitech.2007.12.008 Google Scholar
  121. 121.
    El-Gallab MS, Sklad MP (2004) Machining of aluminum/silicon carbide particulate metal matrix composites: Part IV. Residual stresses in the machined workpiece. J Mater Process Technol 152:23–34.  https://doi.org/10.1016/j.jmatprotec.2004.01.061 Google Scholar
  122. 122.
    Mahdi M, Zhang L (2001) A finite element model for the orthogonal cutting of fiber-reinforced composite materials. J Mater Process Technol 113:373–377.  https://doi.org/10.1016/S0924-0136(01)00675-6 Google Scholar
  123. 123.
    Mackerle J (1998) Finite-element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Technol 86:17–44.  https://doi.org/10.1016/S0924-0136(98)00227-1 Google Scholar
  124. 124.
    Mackerle J (2003) Finite element analysis and simulation of machining: an addendum. Int J Mach Tools Manuf 43:103–114.  https://doi.org/10.1016/S0890-6955(02)00162-1 Google Scholar
  125. 125.
    Chen X, Xie L, Xue X, Wang X (2017) Research on 3D milling simulation of SiCp/Al composite based on a phenomenological model. Int J Adv Manuf Technol 92:2715–2723.  https://doi.org/10.1007/s00170-017-0315-0 Google Scholar
  126. 126.
    Liu YN, Huang ST, Zhou L, Xu LF (2013) Three-dimensional finite element simulation analysis of cutting force of SiCp/Al composite thin-walled parts. Key Eng Mater 589–590:106–110.  https://doi.org/10.4028/www.scientific.net/KEM.589-590.106 Google Scholar
  127. 127.
    Fathipour M, Zoghipour P, Tarighi J, Yousefi R (2012) Investigation of reinforced sic particles percentage on machining force of metal matrix composite. Mod Appl Sci 6:9–20.  https://doi.org/10.5539/mas.v6n8p9 Google Scholar
  128. 128.
    Jadhav MR (2017) Modelling and simulation of Al/SiCp MMCs during hot machining. In: Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition IMECE2016. American Society of Mechanical Engineers, pp 1–7Google Scholar
  129. 129.
    Liu J, Cheng K, Ding H, et al (2017) Simulation study of the influence of cutting speed and tool–particle interaction location on surface formation mechanism in micromachining SiCp/Al composites. Proc Inst Mech Eng Part C J Mech Eng Sci 0:095440621771352 .  https://doi.org/10.1177/0954406217713521
  130. 130.
    Wang B, Xie L, Chen X, Wang X (2016) The milling simulation and experimental research on high volume fraction of SiCp/Al. Int J Adv Manuf Technol 82:809–816.  https://doi.org/10.1007/s00170-015-7399-1 Google Scholar
  131. 131.
    Arunachalam RM, Ramesh S, Senthilkumaar JS (2012) Machining performance study on metal matrix composites-a response surface methodology approach Srinivasan. Am J Appl Sci 9:478–483Google Scholar
  132. 132.
    Gaitonde VN, Karnik SR, Davim JP (2009) Some studies in metal matrix composites machining using response surface methodology. J Reinf Plast Compos 28:2445–2457.  https://doi.org/10.1177/0731684408092375 Google Scholar
  133. 133.
    Arokiadass R, Palaniradja K, Alagumoorthi N (2012) A study on tool wear and surface roughness in end milling of particulate aluminum metal matrix composites: application of response surface methodology. 1–12Google Scholar
  134. 134.
    Suresh P, Marimuthu K, Ranganathan S (2013) Determination of optimum parameters in turning of aluminium hybrid composites. Int Rev Mech Eng 7:115–125Google Scholar
  135. 135.
    Premnath AA, Alwarsamy T, Rajmohan T (2012) Experimental investigation and optimization of process parameters in milling of hybrid metal matrix composites. Mater Manuf Process 27:1035–1044.  https://doi.org/10.1080/10426914.2012.677911 Google Scholar
  136. 136.
    Tamang SK, Chandrasekaran M (2015) Modeling and optimization of parameters for minimizing surface roughness and tool wear in turning Al/SiCp MMC, using conventional and soft computing techniques. Adv Prod Eng Manag 10:2–5Google Scholar
  137. 137.
    Arokiadass R, Palaniradja K, Alagumoorthi N (2012) Tool flank wear model and parametric optimization in end milling of metal matrix composite using carbide tool: response surface methodology approach. Int J Ind Eng Comput 3:511–518.  https://doi.org/10.5267/j.ijiec.2011.12.002 Google Scholar
  138. 138.
    Seeman M, Ganesan G, Karthikeyan R, Velayudham A (2010) Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach. Int J Adv Manuf Technol 48:613–624.  https://doi.org/10.1007/s00170-009-2297-z Google Scholar
  139. 139.
    Koker R, Altinkok N, Demir A (2007) Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms. Mater Des 28:616–627.  https://doi.org/10.1016/j.matdes.2005.07.021 Google Scholar
  140. 140.
    Shabani MO, Mazahery A (2012) Artificial intelligence in numerical modeling of nano sized ceramic particulates reinforced metal matrix composites. Appl Math Model 36:5455–5465.  https://doi.org/10.1016/j.apm.2011.12.059 Google Scholar
  141. 141.
    Muthukrishnan N, Davim JP (2008) Optimization of machining parameters of Al / SiC-MMC with ANOVA and ANN analysis. J Mater Process Technol 9:225–232.  https://doi.org/10.1016/j.jmatprotec.2008.01.041 Google Scholar
  142. 142.
    Tamang S, Chandrasekaran M (2014) Experimental investigation and development of multi response ANN modeling in turning Al-SiCp MMC using polycrystalline diamond tool. Int J Curr EngTechnol 2:1–8Google Scholar
  143. 143.
    Xu L, Davim JP (2008) Modelling cutting power and tool wear in turning of aluminium matrix composites using artificial neural networks. Int J Mater Prod Technol 32:333–342Google Scholar
  144. 144.
    Jeyapaul R, Sivasankar S (2011) Optimization and modeling of turning process for aluminium – silicon carbide composite using artificial neural network models. In: In Industrial Engineering and Engineering Management (IEEM), (2011) IEEE International Conference on. pp 773–778Google Scholar
  145. 145.
    Sahoo AK, Pradhan S, Rout AK (2013) Development and machinability assessment in turning Al/SiCp-metal matrix composite with multilayer coated carbide insert using Taguchi and statistical techniques. Arch Civ Mech Eng 13:27–35.  https://doi.org/10.1016/j.acme.2012.11.005 Google Scholar
  146. 146.
    Dhavamani C, Alwarsamy T (2012) Optimization of machining parameters for aluminum and silicon carbide composite using genetic algorithm. Procedia Eng 38:1994–2004.  https://doi.org/10.1016/j.proeng.2012.06.241 Google Scholar
  147. 147.
    Sahoo AK, Pradhan S (2013) Modeling and optimization of Al/SiCp MMC machining using Taguchi approach. Meas J Int Meas Confed 46:3064–3072.  https://doi.org/10.1016/j.measurement.2013.06.001 Google Scholar
  148. 148.
    Sriprateep K, Patumchat P, Theansuwan W (2011) Application of Taguchi method in the optimization of cutting parameters for turning metal matrix composite. Adv Mater Res 189–193:3056–3060.  https://doi.org/10.4028/www.scientific.net/AMR.189-193.3056 Google Scholar
  149. 149.
    Shetty R, Pai RB, Rao SS, Nayak R (2009) Taguchi’s technique in machining of metal matrix composites. J Braz Soc Mech Sci Eng 31:12–20Google Scholar
  150. 150.
    Roy SS (2006) Design of genetic-fuzzy expert system for predicting surface finish in ultra-precision diamond turning of metal matrix composite. J Mater Process Technol 173:337–344.  https://doi.org/10.1016/j.jmatprotec.2005.12.003 Google Scholar
  151. 151.
    Rajmohan T, Palanikumar K, Prakash S (2013) Grey-fuzzy algorithm to optimise machining parameters in drilling of hybrid metal matrix composites. Compos Part B 50:297–308.  https://doi.org/10.1016/j.compositesb.2013.02.030 Google Scholar
  152. 152.
    Suresh P, Marimuthu K, Ranganathan S, Rajmohan T (2014) Optimization of machining parameters in turning of Al-SiC-Gr hybrid metal matrix composites using grey-fuzzy algorithm. Trans Nonferrous Met Soc China (English Ed) 24:2805–2814.  https://doi.org/10.1016/S1003-6326(14)63412-9 Google Scholar
  153. 153.
    Tamang S, Chandrasekaran M (2014) Application of grey fuzzy logic for simultaneous optimization of surface roughness and metal removal rate in turning Al-SiCp metal matrix composites. In: 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014). pp 832-1-832–7Google Scholar
  154. 154.
    Kalaichelvi V, Karthikeyan R, Sivakumar D, Srinivasan V (2012) Tool wear classification using fuzzy logic for machining of al/sic composite material. Model Numer Simul Mater Sci 2:28–36Google Scholar
  155. 155.
    Chandrasekaran M, Das S, Devarasiddappa D (2015) Determining the effect of cutting parameters on surface roughness in end milling of Al-356/SiCp MMC using fuzzy logic. In: International Conference on Precision, Meso, Micro and Nano Engineering.At: IIT MumbaiGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations