Robust modeling and optimization of borehole enlarging by helical milling of aluminum alloy Al7075

  • Vanessa Flavianne Santana RodriguesEmail author
  • João Roberto Ferreira
  • Anderson Paulo de Paiva
  • Luiz Gustavo Paes de Souza
  • Robson Bruno Dutra Pereira
  • Lincoln Cardoso Brandrão


The paper aims to analyze the use of helical milling in hole enlargement in aluminum alloys, considering the effects of the input variables (tool overhang, cutting speed, axial and tangential feed per tooth) on the output ones related to the hole quality such as radial force, circularity and roughness. Additionally, the robust optimization is developed through the combination of robust parameter design, mean square error, and normal boundary intersection through responses modeled by response surface methodology. The results show that hole enlargement by helical milling is feasible and could achieve good values of radial forces, circularities, and specially roughness, which presented average roughness values under 0.2 μm for all experiments. The observed relationship between input and outputs shows that the axial and tangential feed are significant for all responses in linear, quadratic, and interaction terms, and cutting speed and tool overhang have at least significant terms in linear, quadratic, or interaction models. Low values of axial feed per tooth reduce radial force and circularity. Tool overhang is a noise variable and is directly connected to the shape error, since high values increase circularity deviations. Since significant noise terms exist, the robust optimization was able to reduce the variability of tool overhang in the responses and achieve mean values of circularity, radial forces, average and total roughness of about 7 μm, 20 N, 0.1 μm, and 1.7 μm, respectively.


Borehole enlargement Helical milling Robust optimization Quality holes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge CNPq, CAPES, FAPEMIG, and DEMEC/UFSJ for supporting this research.


  1. 1.
    De Chiffre L, Tosello G, Píška M, Müller P (2009) Investigation on capability of the reaming process using minimal quantity lubrication. CIRP J Manuf Sci Technol 2:47–54. CrossRefGoogle Scholar
  2. 2.
    ASM International (1989) ASM handbook volume 16: machining. USAGoogle Scholar
  3. 3.
    Bhattacharyya O, Kapoor SG, DeVor RE (2006) Mechanistic model for the reaming process with emphasis on process faults. Int J Mach Tool Manu 46:836–846. CrossRefGoogle Scholar
  4. 4.
    Bhattacharyya O, Jun MB, Kapoor SG, DeVor RE (2006) The effects of process faults and misalignments on the cutting force system and hole quality in reaming. Int J Mach Tool Manu 46:1281–1290CrossRefGoogle Scholar
  5. 5.
    Pereira RBD, Leite RR, Alvim AC, Paiva AP, Balestrassi PP, Ferreira JR, Davim JP (2018) Multivariate robust modeling and optimization of cutting forces of the helical milling process of the aluminum alloy Al 7075. Int J Adv Manuf Technol 95:2691–2715. CrossRefGoogle Scholar
  6. 6.
    Bezerra AA, Machado AR, Junior AMS, Ezugwu EO (2001) Effects of machining parameters when reaming aluminium-silicon (SAE 322). J Mater Process Technol 112:185–198. CrossRefGoogle Scholar
  7. 7.
    Wang H, Qin X, Ren C, Wang Q (2012) Prediction of cutting forces in helical milling process. Int J Adv Manuf Technol 58:849–859. CrossRefGoogle Scholar
  8. 8.
    Qin X et al (2012) Comparative study on helical milling and drilling of Ti-6Al-4V. Key Eng Mater 499:200–204. CrossRefGoogle Scholar
  9. 9.
    Brinksmeier E, Fangmann S, Meyer I (2008) Orbital drilling kinematics. Prod Eng Res Devel 2:277–283. CrossRefGoogle Scholar
  10. 10.
    Haiyan W, Xuda Q (2016) A mechanistic model for cutting force in helical milling of carbon fiber-reinforced polymers. Int J Adv Manuf Technol 82:1485–1494. CrossRefGoogle Scholar
  11. 11.
    Pereira RBD, Brandão LC, Paiva AP, Ferreira JR, Davim JP (2017) A review of helical milling process. Int J Mach Tools Manuf 120:27–48. CrossRefGoogle Scholar
  12. 12.
    Iyer R, Koshy P, Ng E (2007) Helical milling: an enabling technology for hard machining precision holes in AISI D2 tool steel. Int J Mach Tools Manuf 47:205–210CrossRefGoogle Scholar
  13. 13.
    Ishida T, Noma K, Kakinuma Y, Aoyama T, Hamada S, Ogawa H, Higaino T (2007) Helical milling of carbon fiber reinforced plastics using ultrasonic vibration and liquid nitrogen. Procedia CIRP 24:13–18. CrossRefGoogle Scholar
  14. 14.
    Fang Q, Pan Z, Fei S, Xie X, Ke Y (2015) A novel helical milling end-effector and its application. IEEE/ASME Trans Mechatron 20:3112–3122. CrossRefGoogle Scholar
  15. 15.
    Li Z, Liu Q (2013) Surface topography and roughness in hole-making by helical milling. Int J Adv Manuf Technol 66:1415–1425. CrossRefGoogle Scholar
  16. 16.
    Sasahara H, Kawasaki M, Tsutsumi M (2008) Helical feed milling with MQL for boring of aluminum alloy. J Adv Mech Des Syst Manuf 2:1030–1040. CrossRefGoogle Scholar
  17. 17.
    Voss R, Henerichs M, Kuster F (2016) Comparison of conventional drilling and orbital drilling in machining carbon fibre reinforced plastics (CFRP). CIRP Ann Manuf Technol 65:137–140CrossRefGoogle Scholar
  18. 18.
    Wang H, Qin X, Li H (2015) Machinability analysis on helical milling of carbon fiber reinforced polymer. J Adv Mech Design, Systems, Manuf 9:1–11. Google Scholar
  19. 19.
    Denkena B, Boehnke D, Dege JH (2008) Helical milling of CFRP-titanium layer compounds. CIRP J Manuf Sci Technol 1:64–69. CrossRefGoogle Scholar
  20. 20.
    Tönshoff T, Friemuth GM (2001) High efficient circular milling: a solution for economical machining of bore holes in composite materials. Proceedings of the third international conference on high speed machining. Metz, France, pp 287–296Google Scholar
  21. 21.
    Yicai S, Ning H E, Liang L I, Xiaojie Q I N, Wei Z (2011) Orbital milling hole of aerospace Al-alloy with big pitch. Transactions of Tianjin University, 329–335. doi:
  22. 22.
    Wang H, Qin X, Ren C, Wang Q (2011) Prediction of cutting forces in helical milling process. Int J Adv Manuf Technol 58:849–859. CrossRefGoogle Scholar
  23. 23.
    Liu C, Wang G, Dargusch MS (2012) Modelling, simulation and experimental investigation of cutting forces during helical milling operations. Int J Adv Manuf Technol 63:839–850. CrossRefGoogle Scholar
  24. 24.
    Li Z, Liu Q, Peng C, Sun X (2010) Cutting force modeling and simulation for hole-making process by helical milling. Proc SPIE Int Soc Opt Eng 7997.
  25. 25.
    Liu H, Zhu W, Dong H, Ke Y (2017) A helical milling and oval countersinking end-effector for aircraft assembly. Mechatronics 46:101–114. CrossRefGoogle Scholar
  26. 26.
    Costa DD, Marques A, Amorin FL (2015) Hole quality and cutting time evaluation in the interpolated helical milling. Int J Manuf Res 10:313–327. CrossRefGoogle Scholar
  27. 27.
    Myers RH, Yoon K, Griffiths KL (1997) Response surface methods and the use of noise variables. J Qual Technol 29:429–440. CrossRefGoogle Scholar
  28. 28.
    Kovach J, Cho BR (2005) Development of product family-based robust design: a case study. Int J Six Sigma Competit Adv 1:403–419. CrossRefGoogle Scholar
  29. 29.
    Chumpol Y, Nembhard H, Hayes G, Adair J (2012) Robust parameter design for multiple-stage nanomanufacturing. IIE Trans 44:580–589. CrossRefGoogle Scholar
  30. 30.
    Welch W, Yu T, Kang SM, Sacks J (1990) Computer experiments for quality control by parameter design. J Qual Technol 22:15–22. CrossRefGoogle Scholar
  31. 31.
    Shoemaker AC, Tsui KL, Wu CFJ (1991) Economical experimentation methods for robust design. Technometrics 33:415–427. CrossRefGoogle Scholar
  32. 32.
    Montgomery DC (2013) Design and analysis of experiments, 8th edn. John Wiley & Sons, United States of AmericaGoogle Scholar
  33. 33.
    Rencher AC (2002) Methods of multivariate analysis, 2nd edn. John Wiley & Sons, New YorkCrossRefzbMATHGoogle Scholar
  34. 34.
    Paiva AP, Ferreira JR, Balestrassi PP (2007) A multivariate hybrid approach applied to AISI 52100 hardened steel turning optimization. J Mater Process Technol 189:26–35. CrossRefGoogle Scholar
  35. 35.
    Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis, 6th edn. Pearson Prentice-Hall, New JerseyzbMATHGoogle Scholar
  36. 36.
    Busacca GP, Marseguerra M, Zio E (2001) Multiobjective optimization by genetic algorithms: application to safety systems. Reliability Engineering & System Safety 72:59–74. CrossRefGoogle Scholar
  37. 37.
    Lin DKJ, Tu W (1995) Dual response surface optimization. J Qual Technol 27(1):34–39. MathSciNetCrossRefGoogle Scholar
  38. 38.
    Berezkin VE, Lotov AV (2014) Comparison of two Pareto frontier approximations. Comput Math Math Phys 54:1455–1464. MathSciNetzbMATHGoogle Scholar
  39. 39.
    Martínez M, García-Nieto S, Sanchis J, Blasco X (2009) Genetic algorithms optimization for normalized normal constraint method under Pareto construction. Adv Eng Softw 40:260–267. CrossRefzbMATHGoogle Scholar
  40. 40.
    Das I, Dennis JE (1997) A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct Optim 14:63–69. CrossRefGoogle Scholar
  41. 41.
    Vahidinasab V, Jadid S (2010) Normal boundary intersection method for suppliers’ strategic bidding in electricity markets: an environmental/economic approach. Energy Convers Manag 51:1111–1119, 2010. CrossRefGoogle Scholar
  42. 42.
    Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8:631–657. MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Ganesan T, Vasant P, Elamvazuthi I (2013) Normal-boundary intersection based parametric multi-objective optimization of green sand mould system. J Manuf Syst 32:197–205. CrossRefGoogle Scholar
  44. 44.
    Utyuzhnikov SV, Fantini P, Guenov MD (2009) A method for generating a well-distributed Pareto set in nonlinear multiobjective optimization. J Comput Appl Math 223:820–841. MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Jia Z, Ierapetritou G (2007) Generate Pareto optimal solutions of scheduling problems using normal boundary intersection technique. Comput Chem Eng 31:268–280. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Vanessa Flavianne Santana Rodrigues
    • 1
    Email author
  • João Roberto Ferreira
    • 1
  • Anderson Paulo de Paiva
    • 1
  • Luiz Gustavo Paes de Souza
    • 1
  • Robson Bruno Dutra Pereira
    • 2
  • Lincoln Cardoso Brandrão
    • 2
  1. 1.Institute of Industrial Engineering and ManagementFederal University of ItajubáItajubáBrazil
  2. 2.Department of Mechanical EngineeringFederal University of São João Del-ReiSão João del ReiBrazil

Personalised recommendations