Advertisement

Mapping of deposition-stable and defect-free additive manufacturing via material extrusion from minimal experiments

  • George Papazetis
  • George-Christopher VosniakosEmail author
ORIGINAL ARTICLE
  • 53 Downloads

Abstract

Despite significant advances and established advantages of material extrusion additive manufacturing, limitations still exist regarding ability to increase productivity and still maintain high shape fidelity and defect-free parts within the range of process parameter values that a 3D printer may support. In the present study, a predictive process-planning tool to balance productivity and quality of fabricated parts according to user’s requirements is developed. Taguchi design of experiments (DoE) method is employed in order to determine the process parameters that impact shape fidelity in terms of material deposition stability that results in surfaces of acceptable flatness and defect-free parts. The development of four well-documented fabrication defects is quantified by CAD-to-part 3D comparison. Then, analysis of variance (ANOVA) was performed to reveal, characteristically, that, even though reduced speed generally results in improved shape fidelity, defects arise when small layer thickness is also set. On the other hand, increased layer thickness may be coupled with moderate material deposition speed to improve process productivity without sacrificing part shape. A highly reliable artificial neural network (ANN) is constructed in an optimum way and trained on the previous experiments with the aim to predict shape fidelity across the entire factor level range. Hence, material flow rate which is a function of investigated factors is provided with direct feedback by the ANN regarding possible defects or deteriorated part shape. The method presented lays the basis for robust process optimization on any 3D printer.

Keywords

Material extrusion Fused filament fabrication Shape fidelity Taguchi method Artificial neural network Process optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Charlotte Lassime from École Nationale d’Ingénieurs de Saint-Étienne (ENISE) is gratefully acknowledged for helping with measurements.

Funding information

This study is financially supported by the National Technical University of Athens PhD stipends.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    ISO/ASTM 52900 (2015) Additive manufacturing—general principles—terminology. International Standard Organization (ISO), ASTM InternationalGoogle Scholar
  2. 2.
    Boschetto A, Bottini L, Veniali F (2016) Finishing of fused deposition modeling parts by CNC machining. Robot Comput Integr Manuf 41:92–101.  https://doi.org/10.1016/j.rcim.2016.03.004 CrossRefGoogle Scholar
  3. 3.
    Yang S, Zhao YF (2015) Additive manufacturing-enabled design theory and methodology: a critical review. Int J Adv Manuf Technol 80:327–342.  https://doi.org/10.1007/s00170-015-6994-5 CrossRefGoogle Scholar
  4. 4.
    Lušić M, Barabanov A, Morina D, Feuerstein F, Hornfeck R (2015) Towards zero waste in additive manufacturing: a case study investigating one pressurised rapid tooling Mould to ensure resource efficiency. Proc CIRP 37:54–58.  https://doi.org/10.1016/j.procir.2015.08.022 CrossRefGoogle Scholar
  5. 5.
    Costa SF, Duarte FM, Covas JA (2017) Estimation of filament temperature and adhesion development in fused deposition techniques. J Mater Process Technol 245:167–179.  https://doi.org/10.1016/j.jmatprotec.2017.02.026 CrossRefGoogle Scholar
  6. 6.
    Sun Q, Rizvi GM, Bellehumeur CT, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14:72–80.  https://doi.org/10.1108/13552540810862028 CrossRefGoogle Scholar
  7. 7.
    Turner BN, Strong R, Gold A (2014) A review of melt extrusion additive manufacturing processes: I. process design and modeling. Rapid Prototyp J 20:192–204.  https://doi.org/10.1108/RPJ-01-2013-0012 CrossRefGoogle Scholar
  8. 8.
    Go J, Schiffres SN, Stevens AG, Hart AJ (2017) Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Addit Manuf 16:1–11.  https://doi.org/10.1016/j.addma.2017.03.007 CrossRefGoogle Scholar
  9. 9.
    Go J, Hart AJ (2017) Fast desktop-scale extrusion additive manufacturing. Addit Manuf 18:276–284.  https://doi.org/10.1016/j.addma.2017.10.016 CrossRefGoogle Scholar
  10. 10.
    Michaeli W (2003) Extrusion dies for plastics and rubber. doi:  https://doi.org/10.3139/9783446401815
  11. 11.
    Ramanath HS, Chua CK, Leong KF, Shah KD (2008) Melt flow behaviour of poly-ε-caprolactone in fused deposition modelling. J Mater Sci-Mater M 19:2541–2550.  https://doi.org/10.1007/s10856-007-3203-6 CrossRefGoogle Scholar
  12. 12.
    Venkataraman N, Rangarajan S, Matthewson MJ, Harper B, Safari A, Danforth SC, Wu G, Langrana N, Guceri S, Yardimci A (2000) Feedstock material property—process relationships in fused deposition of ceramics (FDC). Rapid Prototyp J 6:244–253.  https://doi.org/10.1108/13552540010373344 CrossRefGoogle Scholar
  13. 13.
    Tlegenov Y, Wong YS, Hong GS (2017) A dynamic model for nozzle clog monitoring in fused deposition modelling. Rapid Prototyp J 23:391–400.  https://doi.org/10.1108/RPJ-04-2016-0054 CrossRefGoogle Scholar
  14. 14.
    Ajinjeru C, Kishore V, Liu P, Lindahl J, Hassen AA, Kunc V, Post B, Love L, Duty C (2018) Determination of melt processing conditions for high performance amorphous thermoplastics for large format additive manufacturing. Addit Manuf 21:125–132.  https://doi.org/10.1016/j.addma.2018.03.004 CrossRefGoogle Scholar
  15. 15.
    Agarwala MK, Jamalabad VR, Langrana NA, Safari A, Whalen PJ, Danforth SC (1996) Structural quality of parts processed by fused deposition. Rapid Prototyp J 2:4–19.  https://doi.org/10.1108/13552549610732034 CrossRefGoogle Scholar
  16. 16.
    Spoerk M, Gonzalez-Gutierrez J, Lichal C, Cajner H, Berger G, Schuschnigg S, Cardon L, Holzer C (2018) Optimisation of the adhesion of polypropylene-based materials during extrusion-based additive manufacturing. Polymers (Basel) doi:  https://doi.org/10.3390/polym10050490
  17. 17.
    Bellehumeur C, Li L, Sun Q, Gu P (2004) Modeling of bond formation between polymer filaments in the fused deposition modeling process. J Manuf Process 6:170–178.  https://doi.org/10.1016/S1526-6125(04)70071-7 CrossRefGoogle Scholar
  18. 18.
    Comminal R, Serdeczny MP, Pedersen DB, Spangenberg J (2018) Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing. Addit Manuf 20:68–76.  https://doi.org/10.1016/j.addma.2017.12.013 CrossRefGoogle Scholar
  19. 19.
    Spoerk M, Arbeiter F, Cajner H, Sapkota J, Holzer C (2017) Parametric optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid). J Appl Polym Sci 134:45401.  https://doi.org/10.1002/app.45401 CrossRefGoogle Scholar
  20. 20.
    Vosniakos GC, Maroulis T, Pantelis D (2007) A method for optimizing process parameters in layer-based rapid prototyping. Proc Inst Mech Eng B J Eng Manuf 221:1329–1340.  https://doi.org/10.1243/09544054JEM815 CrossRefGoogle Scholar
  21. 21.
    Pandey PM, Thrimurthulu K, Reddy * NV (2004) Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. Int J Prod Res 42:4069–4089.  https://doi.org/10.1080/00207540410001708470 CrossRefzbMATHGoogle Scholar
  22. 22.
    Song HC, Ray N, Sokolov D, Lefebvre S (2017) Anti-aliasing for fused filament deposition. Comput Aided Design 89:25–34.  https://doi.org/10.1016/j.cad.2017.04.001 CrossRefGoogle Scholar
  23. 23.
    Brooks HL, Rennie AEW, Abram TN, et al (2012) Variable fused deposition modelling—analysis of benefits, concept design and tool path generation. Innov Dev Virtual Phys Prototyp - Proc 5th Int Conf Adv Res Rapid Prototyp 511–517. doi:  https://doi.org/10.13140/2.1.2280.2887
  24. 24.
    Fitzharris ER, Watanabe N, Rosen DW, Shofner ML (2018) Effects of material properties on warpage in fused deposition modeling parts. Int J Adv Manuf Technol 95:2059–2070.  https://doi.org/10.1007/s00170-017-1340-8 CrossRefGoogle Scholar
  25. 25.
    Stoof D, Pickering K (2018) Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene. Compos Part B-Eng 135:110–118.  https://doi.org/10.1016/j.compositesb.2017.10.005 CrossRefGoogle Scholar
  26. 26.
    Wang TM, Xi JT, Jin Y (2007) A model research for prototype warp deformation in the FDM process. Int J Adv Manuf Technol 33:1087–1096.  https://doi.org/10.1007/s00170-006-0556-9 CrossRefGoogle Scholar
  27. 27.
    Spoerk M, Gonzalez-Gutierrez J, Sapkota J, Schuschnigg S, Holzer C (2018) Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication. Plast Rubber Compos 47:17–24.  https://doi.org/10.1080/14658011.2017.1399531 CrossRefGoogle Scholar
  28. 28.
    Gu Q, Herakleous K, Poullis C (2014) 3DUNDERWORLD-SLS: an open-source structured-light scanning system for rapid geometry acquisition. 1–30Google Scholar
  29. 29.
    Roy RK (1990) A primer on the Taguchi method. Van Nostrand Reinhold, New YorkzbMATHGoogle Scholar
  30. 30.
    Mahmood S, Qureshi AJ, Talamona D (2018) Taguchi based process optimization for dimension and tolerance control for fused deposition modelling. Addit Manuf 21:183–190.  https://doi.org/10.1016/j.addma.2018.03.009 CrossRefGoogle Scholar
  31. 31.
    Liu X, Zhang M, Li S, Si L, Peng J, Hu Y (2017) Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. Int J Adv Manuf Technol 89:2387–2397.  https://doi.org/10.1007/s00170-016-9263-3 CrossRefGoogle Scholar
  32. 32.
    Sood AK, Ohdar RK, Mahapatra SS (2009) Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Mater Des 30:4243–4252.  https://doi.org/10.1016/j.matdes.2009.04.030 CrossRefGoogle Scholar
  33. 33.
    Czitrom V (1989) Taguchi methods: linear graphs of high resolution. Commun Stat-Theor M 18:4583–4606.  https://doi.org/10.1080/03610928908830176 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Boschetto A, Giordano V, Veniali F (2013) Surface roughness prediction in fused deposition modelling by neural networks. Int J Adv Manuf Technol 67:2727–2742.  https://doi.org/10.1007/s00170-012-4687-x CrossRefGoogle Scholar
  35. 35.
    Wilcox JAD, Wright DT (1998) Towards pultrusion process optimisation using artificial neural networks. J Mater Process Technol 83:131–141.  https://doi.org/10.1016/S0924-0136(98)00052-1 CrossRefGoogle Scholar
  36. 36.
    Dias FM, Antunes A, Vieira J, Mota AM (2004) Implenting the Levenberg-Marquardt algorithm on-line: a sliding window approach with early stopping. IFAC Proc Vol 37:49-54.  https://doi.org/10.1016/S1474-6670(17)30849-2
  37. 37.
    Yalcin U, Karaoglan AD, Korkut I (2013) Optimization of cutting parameters in face milling with neural networks and Taguchi based on cutting force, surface roughness and temperatures. Int J Prod Res 51:3404–3414.  https://doi.org/10.1080/00207543.2013.774482 CrossRefGoogle Scholar
  38. 38.
    Madić M, Madić MJ, Radovanović MR (2011) Optimal selection of ANN training and architectural parameters using Taguchi method: a case study. FME Trans 39:79–86Google Scholar
  39. 39.
    Benardos PG, Vosniakos GC (2007) Optimizing feedforward artificial neural network architecture. Eng Appl Artif Intell 20:365–382.  https://doi.org/10.1016/j.engappai.2006.06.005 CrossRefGoogle Scholar
  40. 40.
    Hagan MT, Demuth HB, Beale MH, De Jesús O (2014) Neural network design. Martin HaganGoogle Scholar
  41. 41.
    Ertay DS, Yuen A, Altintas Y (2018) Synchronized material deposition rate control with path velocity on fused filament fabrication machines. Addit Manuf 19:205–213.  https://doi.org/10.1016/j.addma.2017.05.011 CrossRefGoogle Scholar
  42. 42.
    Bellini A, Güçeri S, Bertoldi M (2004) Liquefier dynamics in fused deposition. J Manuf Sci Eng 126:237.  https://doi.org/10.1115/1.1688377 CrossRefGoogle Scholar
  43. 43.
    Suiker ASJ (2018) Mechanical performance of wall structures in 3D printing processes: theory, design tools and experiments. Int J Mech Sci 137:145–170.  https://doi.org/10.1016/j.ijmecsci.2018.01.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • George Papazetis
    • 1
  • George-Christopher Vosniakos
    • 1
    Email author
  1. 1.Department of Manufacturing Technology, School of Mechanical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations