Advertisement

A review on machining of NiTi shape memory alloys: the process and post process perspective

  • Eren Kaya
  • İrfan Kaya
ORIGINAL ARTICLE
  • 23 Downloads

Abstract

Nickel–titanium (NiTi) shape memory alloys have gained more prominence due to their functional and mechanical properties. This material undergoes solid-state phase transformation during machining. Together with this, inherent properties of this material result in challenging machinability behaviors such as excessive tool wear, high cutting forces, and degraded surface integrity. Furthermore, unique stress–strain curve of this material complicates predicting machining behaviors. This paper reviews research in the machining of NiTi shape memory alloys carried out over the last 20 years with the objective of assessing overall machinability characteristics. It is concluded that functional properties and machinability responses of NiTi are very sensitive to machining parameters and environment. Machinability rate of NiTi should be assessed not only by usual machinability measures (i.e., tool wear, cutting forces, surface integrity) but also by considering post machining functional behaviors.

Keywords

Machinability NiTi Shape memory alloy Tool wear Surface integrity Functional quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Anadolu University Scientific Research Commission (grant numbers 1706F382, 1803F068).

References

  1. 1.
    Zainal MA, Sahlan S, Ali MSM (2015) Micromachined shape-memory-alloy microactuators and their application in biomedical devices. Micromachines 6(7):879–901CrossRefGoogle Scholar
  2. 2.
    Stoeckel D (1990) Shape memory actuators for automotive applications. Mater Des 11(6):302–307.  https://doi.org/10.1016/0261-3069(90)90013-A CrossRefGoogle Scholar
  3. 3.
    Butera F, Coda A, Vergani G, SpA SG (2007) Shape memory actuators for automotive applications. Nanotec IT newsletter Roma: AIRI/nanotec IT:12–16.  https://doi.org/10.1016/0261-3069(90)90013-A CrossRefGoogle Scholar
  4. 4.
    Bil C, Massey K, Abdullah EJ (2013) Wing morphing control with shape memory alloy actuators. J Intell Mater Syst Struct 24(7):879–898.  https://doi.org/10.1177/1045389X12471866 CrossRefGoogle Scholar
  5. 5.
    Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng G J aerosp eng 221(4):535–552.  https://doi.org/10.1243/09544100JAERO211 CrossRefGoogle Scholar
  6. 6.
    Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys. J Metall.  https://doi.org/10.1155/2011/501483 CrossRefGoogle Scholar
  7. 7.
    Kaya A, Kaya I, Karaca HE (2013) Radio frequency U-shape slot antenna design with NiTi shape memory alloys. Microw Opt Technol Lett 55(12):2976–2984.  https://doi.org/10.1002/mop.27977 CrossRefGoogle Scholar
  8. 8.
    Kaya A, Kaya I, Karaca HE (2016) U-shape slot antenna design with high-strength Ni54Ti46 alloy. Arab J Sci Eng 41(9):3297–3307.  https://doi.org/10.1007/s13369-015-1819-2 CrossRefGoogle Scholar
  9. 9.
    Furuya Y (1996) Design and material evaluation of shape memory composites. J Intell Mater Syst Struct 7(3):321–330.  https://doi.org/10.1177/1045389X9600700313 CrossRefGoogle Scholar
  10. 10.
    Kohl M (2013) Shape memory microactuators. Springer Science & Business Media.Google Scholar
  11. 11.
    Kahn H, Huff M, Heuer A (1998) The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng 8(3):213.  https://doi.org/10.1088/0960-1317/8/3/007 CrossRefGoogle Scholar
  12. 12.
    Wilkes KE, Liaw PK (2000) The fatigue behavior of shape-memory alloys. JOM 52(10):45–51.  https://doi.org/10.1007/s11837-000-0083-3 CrossRefGoogle Scholar
  13. 13.
    Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23(1):11–19.  https://doi.org/10.1016/S0261-3069(01)00039-5 CrossRefGoogle Scholar
  14. 14.
    Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des (1980–2015) 56:1078–1113.  https://doi.org/10.1016/j.matdes.2013.11.084 CrossRefGoogle Scholar
  15. 15.
    Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57(5):911–946.  https://doi.org/10.1016/j.pmatsci.2011.11.001 CrossRefGoogle Scholar
  16. 16.
    Ryhänen J (2000) Biocompatibility of nitinol. Minim Invasive Ther Allied Technol 9(2):99–105.  https://doi.org/10.3109/13645700009063056 CrossRefGoogle Scholar
  17. 17.
    Ryhänen J, Niemi E, Serlo W, Niemelä E, Sandvik P, Pernu H, Salo T (1997) Biocompatibility of nickel–titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 35(4):451–457CrossRefGoogle Scholar
  18. 18.
    Shih CC, Lin SJ, Chen YL, Su YY, Lai ST, Wu GJ, Kwok CF, Chung KH (2000) The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells. J Biomed Mater Res 52(2):395–403CrossRefGoogle Scholar
  19. 19.
    Bahraminasab M, Sahari BB (2013) NiTi shape memory alloys, promising materials in orthopedic applications. In: Shape memory alloys—processing, characterization and applications. InTech.  https://doi.org/10.5772/48419 Google Scholar
  20. 20.
    Shabalovskaya SA (2002) Surface, corrosion and biocompatibility aspects of nitinol as an implant material. Biomed Mater Eng 12(1):69–109Google Scholar
  21. 21.
    Es-Souni M, Es-Souni M, Fischer-Brandies H (2005) Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381(3):557–567.  https://doi.org/10.1007/s00216-004-2888-3 CrossRefGoogle Scholar
  22. 22.
    Sun L, Huang WM (2009) Nature of the multistage transformation in shape memory alloys upon heating. Met Sci Heat Treat 51(11):573–578.  https://doi.org/10.1007/s11041-010-9213-x CrossRefGoogle Scholar
  23. 23.
    Lagoudas DC (2008) Shape memory alloys. Science and Business Media, LLCGoogle Scholar
  24. 24.
    Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press.Google Scholar
  25. 25.
    Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng A 378(1):16–23.  https://doi.org/10.1016/j.msea.2003.10.326 CrossRefGoogle Scholar
  26. 26.
    Massalski TB, Okamoto H, Subramanian P, Kacprzak L (1991) Binary alloy phase diagrams, (ASM International, Materials Park, OH, 1990). Google Scholar 3503Google Scholar
  27. 27.
    Wu MH (2002) Fabrication of nitinol materials and components. Mater Sci Forum 394-395:285–292.  https://doi.org/10.4028/www.scientific.net/MSF.394-395.285 CrossRefGoogle Scholar
  28. 28.
    Shishkovsky I, Yadroitsev I, Smurov I (2012) Direct selective laser melting of nitinol powder. Phys Procedia 39:447–454.  https://doi.org/10.1016/j.phpro.2012.10.060 CrossRefGoogle Scholar
  29. 29.
    Miyazaki S, Kimura S, Takei F, Miura T, Otsuka K, Suzuki Y (1983) Shape memory effect and pseudoelasticity in a Ti • Ni single crystal. Scr Metall 17(9):1057–1062.  https://doi.org/10.1016/0036-9748(83)90453-2 CrossRefGoogle Scholar
  30. 30.
    Srivastava AK, Schryvers D, Van Humbeeck J (2007) Grain growth and precipitation in an annealed cold-rolled Ni50.2Ti49.8 alloy. Intermetallics 15(12):1538–1547.  https://doi.org/10.1016/j.intermet.2007.06.003 CrossRefGoogle Scholar
  31. 31.
    McCormick P, Liu Y (1994) Thermodynamic analysis of the martensitic transformation in NiTi—II. Effect of transformation cycling. Acta Metall Mater 42(7):2407–2413.  https://doi.org/10.1016/0956-7151(94)90319-0 CrossRefGoogle Scholar
  32. 32.
    Miller DA, Lagoudas DC (2001) Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi. Mater Sci Eng A 308(1–2):161–175.  https://doi.org/10.1016/S0921-5093(00)01982-1 CrossRefGoogle Scholar
  33. 33.
    Carroll MC, Somsen C, Eggeler G (2004) Multiple-step martensitic transformations in Ni-rich NiTi shape memory alloys. Scr Mater 50(2):187–192.  https://doi.org/10.1016/j.scriptamat.2003.09.020 CrossRefGoogle Scholar
  34. 34.
    Filip P, Mazanec K (1995) Influence of work hardening and heat treatment on the substructure and deformation behaviour of TiNi shape memory alloys. Scr Metall Mater 32(9):1375–1380.  https://doi.org/10.1016/0956-716X(95)00174-T CrossRefGoogle Scholar
  35. 35.
    Morawiec H, Stróż D, Goryczka T, Chrobak D (1996) Two-stage martensitic transformation in a deformed and annealed NiTi alloy. Scr Mater 35(4):485–490.  https://doi.org/10.1016/1359-6462(96)00179-0 CrossRefGoogle Scholar
  36. 36.
    Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378(1):24–33.  https://doi.org/10.1016/j.msea.2003.10.327 CrossRefGoogle Scholar
  37. 37.
    Frick CP, Ortega AM, Tyber J, Maksound AEM, Maier HJ, Liu Y, Gall K (2005) Thermal processing of polycrystalline NiTi shape memory alloys. Mater Sci Eng A 405(1):34–49.  https://doi.org/10.1016/j.msea.2005.05.102 CrossRefGoogle Scholar
  38. 38.
    Khaleghi F, Khalil-Allafi J, Abbasi-Chianeh V, Noori S (2013) Effect of short-time annealing treatment on the superelastic behavior of cold drawn Ni-rich NiTi shape memory wires. J Alloys Compd 554:32–38.  https://doi.org/10.1016/j.jallcom.2012.11.183 CrossRefGoogle Scholar
  39. 39.
    Lei X, Rui W, Yong L (2011) The optimization of annealing and cold-drawing in the manufacture of the Ni–Ti shape memory alloy ultra-thin wire. Int J Adv Manuf Technol 55(9):905–910.  https://doi.org/10.1007/s00170-010-3116-2 CrossRefGoogle Scholar
  40. 40.
    Canadinc D, Trehern W, Ozcan H, Hayrettin C, Karakoc O, Karaman I, Sun F, Chaudhry Z (2017) On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires. Scr Mater 135:92–96.  https://doi.org/10.1016/j.scriptamat.2017.03.025 CrossRefGoogle Scholar
  41. 41.
    Huang H (2004) A study of high-speed milling characteristics of nitinol. Mater Manuf Process 19(2):159–175.  https://doi.org/10.1081/AMP-120029849 MathSciNetCrossRefGoogle Scholar
  42. 42.
    Weinert K, Petzoldt V (2004) Machining of NiTi based shape memory alloys. Mater Sci Eng A 378(1):180–184.  https://doi.org/10.1016/j.msea.2003.10.344 CrossRefGoogle Scholar
  43. 43.
    Guo Y, Klink A, Fu C, Snyder J (2013) Machinability and surface integrity of nitinol shape memory alloy. CIRP Ann Manuf Technol 62(1):83–86.  https://doi.org/10.1016/j.cirp.2013.03.004 CrossRefGoogle Scholar
  44. 44.
    Lin H, Lin K, Chen Y (2000) A study on the machining characteristics of TiNi shape memory alloys. J Mater Process Technol 105(3):327–332.  https://doi.org/10.1016/S0924-0136(00)00656-7 CrossRefGoogle Scholar
  45. 45.
    Weinert K, Petzoldt V, Kötter D, Buschka M (2004) Drilling of NiTi shape memory alloys. Mater Werkst 35(5):338–341CrossRefGoogle Scholar
  46. 46.
    Piquard R, D’Acunto A, Laheurte P, Dudzinski D (2014) Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation. Precis Eng 38(2):356–364.  https://doi.org/10.1016/j.precisioneng.2013.11.006 CrossRefGoogle Scholar
  47. 47.
    Kong M, Axinte D, Voice W (2011) Challenges in using waterjet machining of NiTi shape memory alloys: an analysis of controlled-depth milling. J Mater Process Technol 211(6):959–971CrossRefGoogle Scholar
  48. 48.
    Porter G, Liaw P, Tiegs T, Wu K (2001) Fatigue and fracture behavior of nickel–titanium shape-memory alloy reinforced aluminum composites. Mater Sci Eng A 314(1):186–193.  https://doi.org/10.1016/S0921-5093(00)01915-8 CrossRefGoogle Scholar
  49. 49.
    Biermann D, Kahleyss F, Surmann T (2009) Micromilling of NiTi shape-memory alloys with ball nose cutters. Mater Manuf Process 24(12):1266–1273.  https://doi.org/10.1080/10426910903129935 CrossRefGoogle Scholar
  50. 50.
    Kaynak Y, Karaca H, Jawahir I (2015) Cutting speed dependent microstructure and transformation behavior of NiTi alloy in dry and cryogenic machining. J Mater Eng Perform 24(1):452–460.  https://doi.org/10.1007/s11665-014-1247-6 CrossRefGoogle Scholar
  51. 51.
    Theisen W, Schuermann A (2004) Electro discharge machining of nickel–titanium shape memory alloys. Mater Sci Eng A 378(1):200–204.  https://doi.org/10.1016/j.msea.2003.09.115 CrossRefGoogle Scholar
  52. 52.
    Uppal N, Shiakolas PS (2008) Micromachining characteristics of NiTi based shape memory alloy using femtosecond laser. J Manuf Sci Eng 130(3):031117.  https://doi.org/10.1007/s00170-015-7598-9 CrossRefGoogle Scholar
  53. 53.
    Huang H, Zheng H, Liu Y (2005) Experimental investigations of the machinability of Ni50. 6Ti49. 4 alloy. Smart Mater Struct 14(5):S297.  https://doi.org/10.1088/0964-1726/14/5/019 CrossRefGoogle Scholar
  54. 54.
    Biermann D, Kahleyss F, Krebs E, Upmeier T (2011) A study on micro-machining technology for the machining of NiTi: five-axis micro-milling and micro deep-hole drilling. J Mater Eng Perform 20(4):745–751.  https://doi.org/10.1007/s11665-010-9796-9 CrossRefGoogle Scholar
  55. 55.
    Handbook A (1989) Volume 16: machining. ASM International Handbook Committee. ASM International, ElectronicGoogle Scholar
  56. 56.
    Handbook M (1990) Vol. 2—properties and selection: nonferrous alloys and special-purpose materials. ASM Inter 1119–1124Google Scholar
  57. 57.
    Ismail F, Mridha S Microstructure–hardness relationship of Inconel 718 compressor blade heat treated at different conditions. In: Advanced Materials Research, 2012. Trans Tech Publ, p 459–462. doi: https://doi.org/10.4028/www.scientific.net/AMR.576.459 CrossRefGoogle Scholar
  58. 58.
    Stanford MK (2012) Thermophysical properties of 60-nitinol for mechanical component applicationsGoogle Scholar
  59. 59.
    Stanford MK (2016) Hardness and microstructure of binary and ternary nitinol compoundsGoogle Scholar
  60. 60.
    Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68(3):262–274.  https://doi.org/10.1016/S0924-0136(96)00030-1 CrossRefGoogle Scholar
  61. 61.
    Jianxin D, Yousheng L, Wenlong S (2008) Diffusion wear in dry cutting of Ti–6Al–4V with WC/co carbide tools. Wear 265(11):1776–1783.  https://doi.org/10.1016/j.wear.2008.04.024 CrossRefGoogle Scholar
  62. 62.
    Kitagawa T, Kubo A, Maekawa K (1997) Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti–6Al–6V–2Sn. Wear 202(2):142–148.  https://doi.org/10.1016/S0043-1648(96)07255-9 CrossRefGoogle Scholar
  63. 63.
    Ezugwu E, Da Silva R, Bonney J, Machado A (2005) Evaluation of the performance of CBN tools when turning Ti–6Al–4V alloy with high pressure coolant supplies. Int J Mach Tools Manuf 45(9):1009–1014.  https://doi.org/10.1016/j.ijmachtools.2004.11.027 CrossRefGoogle Scholar
  64. 64.
    Grzesik W, Zalisz Z, Krol S, Nieslony P (2006) Investigations on friction and wear mechanisms of the PVD-TiAlN coated carbide in dry sliding against steels and cast iron. Wear 261(11):1191–1200.  https://doi.org/10.1016/j.wear.2006.03.004 CrossRefGoogle Scholar
  65. 65.
    Wolfe G, Petrosky C, Quinto D (1986) The role of hard coatings in carbide milling tools. J Vac Sci Technol A 4(6):2747–2754.  https://doi.org/10.1116/1.573673 CrossRefGoogle Scholar
  66. 66.
    Ezugwu EO, Wang ZM, Okeke CI (1999) Tool life and surface integrity when machining Inconel 718 with PVD- and CVD-coated tools. Tribol Trans 42(2):353–360.  https://doi.org/10.1080/10402009908982228 CrossRefGoogle Scholar
  67. 67.
    Mehrpouya M, Shahedin AM, Daood Salman Dawood S, Kamal Ariffin A (2017) An investigation on the optimum machinability of NiTi based shape memory alloy. Mater Manuf Process 1–8. doi: https://doi.org/10.1080/10426914.2017.1279290 CrossRefGoogle Scholar
  68. 68.
    Xavior MA, Manohar M, Jeyapandiarajan P, Madhukar PM (2017) Tool wear assessment during machining of Inconel 718. Proced Eng 174:1000–1008.  https://doi.org/10.1016/j.proeng.2017.01.252 CrossRefGoogle Scholar
  69. 69.
    Davoodi B, Hosseini Tazehkandi A (2016) Cutting forces and surface roughness in wet machining of Inconel alloy 738 with coated carbide tool. Proc Inst Mech Eng B J Eng Manuf 230(2):215–226.  https://doi.org/10.1177/0954405414542990 CrossRefGoogle Scholar
  70. 70.
    Thakur A, Gangopadhyay S (2016) Dry machining of nickel-based super alloy as a sustainable alternative using TiN/TiAlN coated tool. J Clean Prod 129:256–268.  https://doi.org/10.1016/j.jclepro.2016.04.074 CrossRefGoogle Scholar
  71. 71.
    Bhatt A, Attia H, Vargas R, Thomson V (2010) Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718. Tribol Int 43(5–6):1113–1121.  https://doi.org/10.1016/j.triboint.2009.12.053 CrossRefGoogle Scholar
  72. 72.
    Sharif S, Rahim EA (2007) Performance of coated- and uncoated-carbide tools when drilling titanium alloy—Ti–6Al4V. J Mater Process Technol 185(1):72–76.  https://doi.org/10.1016/j.jmatprotec.2006.03.142 CrossRefGoogle Scholar
  73. 73.
    Zhang S, Li JF, Deng JX, Li YS (2008) Investigation on diffusion wear during high-speed machining Ti-6Al-4V alloy with straight tungsten carbide tools. Int J Adv Manuf Technol 44(1):17.  https://doi.org/10.1007/s00170-008-1803-z CrossRefGoogle Scholar
  74. 74.
    Choudhury IA, El-Baradie MA (1998) Machinability of nickel-base super alloys: a general review. J Mater Process Technol 77(1):278–284.  https://doi.org/10.1016/S0924-0136(97)00429-9 CrossRefGoogle Scholar
  75. 75.
    Richards N, Aspinwall D (1989) Use of ceramic tools for machining nickel based alloys. Int J Mach Tools Manuf 29(4):575–588.  https://doi.org/10.1016/0890-6955(89)90072-2 CrossRefGoogle Scholar
  76. 76.
    Ding X, Liew WYH, Liu XD (2005) Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 259(7):1225–1234.  https://doi.org/10.1016/j.wear.2005.02.094 CrossRefGoogle Scholar
  77. 77.
    Ezugwu EO, Bonney J, Da Silva RB, Çakir O (2007) Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies. Int J Mach Tools Manuf 47(6):884–891.  https://doi.org/10.1016/j.ijmachtools.2006.08.005 CrossRefGoogle Scholar
  78. 78.
    Altin A, Nalbant M, Taskesen A (2007) The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools. Mater Des 28(9):2518–2522.  https://doi.org/10.1016/j.matdes.2006.09.004 CrossRefGoogle Scholar
  79. 79.
    Li L, He N, Wang M, Wang ZG (2002) High speed cutting of Inconel 718 with coated carbide and ceramic inserts. J Mater Process Technol 129(1):127–130.  https://doi.org/10.1016/S0924-0136(02)00590-3 CrossRefGoogle Scholar
  80. 80.
    Ezugwu EO, Bonney J, Fadare DA, Sales WF (2005) Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures. J Mater Process Technol 162-163:609–614.  https://doi.org/10.1016/j.jmatprotec.2005.02.144 CrossRefGoogle Scholar
  81. 81.
    Kertesz J, Pryor RJ, Richerson DW, Cutler RA (1988) Machining titanium alloys with ceramic tools. JOM 40(5):50–51.  https://doi.org/10.1007/bf03258917 CrossRefGoogle Scholar
  82. 82.
    Weinert K, Petzoldt V, Kötter D (2004) Turning and drilling of NiTi shape memory alloys. CIRP Ann Manuf Technol 53(1):65–68.  https://doi.org/10.1016/S0007-8506(07)60646-5 CrossRefGoogle Scholar
  83. 83.
    Zhou J, Bushlya V, Avdovic P, Ståhl JE (2012) Study of surface quality in high speed turning of Inconel 718 with uncoated and coated CBN tools. Int J Adv Manuf Technol 58(1):141–151.  https://doi.org/10.1007/s00170-011-3374-7 CrossRefGoogle Scholar
  84. 84.
    Bushlya V, Zhou J, Ståhl J-E (2012) Effect of cutting conditions on machinability of superalloy Inconel 718 during high speed turning with coated and uncoated PCBN tools. Proced CIRP 3:370–375CrossRefGoogle Scholar
  85. 85.
    Costes J-P, Guillet Y, Poulachon G, Dessoly M (2007) Tool-life and wear mechanisms of CBN tools in machining of Inconel 718. Int J Mach Tools Manuf 47(7–8):1081–1087.  https://doi.org/10.1016/j.ijmachtools.2006.09.031 CrossRefGoogle Scholar
  86. 86.
    Tanaka H, Sugihara T, Enomoto T (2016) High speed machining of Inconel 718 focusing on wear behaviors of PCBN cutting tool. Proced Cirp 46:545–548.  https://doi.org/10.1016/j.procir.2016.03.120 CrossRefGoogle Scholar
  87. 87.
    Arunachalam R, Mannan M, Spowage A (2004) Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. Int J Mach Tools Manuf 44(9):879–887.  https://doi.org/10.1016/j.ijmachtools.2004.02.016 CrossRefGoogle Scholar
  88. 88.
    Corduan N, Himbart T, Poulachon G, Dessoly M, Lambertin M, Vigneau J, Payoux B (2003) Wear mechanisms of new tool materials for Ti-6AI-4V high performance machining. CIRP Ann 52(1):73–76.  https://doi.org/10.1016/S0007-8506(07)60534-4 CrossRefGoogle Scholar
  89. 89.
    Dogra M, Sharma VS, Sachdeva A, Suri NM, Dureja JS (2010) Tool wear, chip formation and workpiece surface issues in CBN hard turning: a review. Int J Precis Eng Manuf 11(2):341–358.  https://doi.org/10.1007/s12541-010-0040-1 CrossRefGoogle Scholar
  90. 90.
    Zoya Z, Krishnamurthy R (2000) The performance of CBN tools in the machining of titanium alloys. J Mater Process Technol 100(1–3):80–86.  https://doi.org/10.1016/S0924-0136(99)00464-1 CrossRefGoogle Scholar
  91. 91.
    Zareena AR, Rahman M, Wong Y (2005) Binderless CBN tools, a breakthrough for machining titanium alloys. J Manuf Sci Eng 127(2):277–279CrossRefGoogle Scholar
  92. 92.
    Hirosaki K, Shintani K, Kato H, Asakura F, Matsuo K (2004) High speed machining of bio-titanium alloy with a binder-less PcBN tool. JSME Int J Ser C Mech Syst Mach Elem Manuf 47(1):14–20.  https://doi.org/10.1299/jsmec.47.14 CrossRefGoogle Scholar
  93. 93.
    Amin AKMN, Ismail AF, Nor Khairusshima MK (2007) Effectiveness of uncoated WC–Co and PCD inserts in end milling of titanium alloy—Ti–6Al–4V. J Mater Process Technol 192-193:147–158.  https://doi.org/10.1016/j.jmatprotec.2007.04.095 CrossRefGoogle Scholar
  94. 94.
    Nabhani F (2001) Machining of aerospace titanium alloys. Robot Comput Integr Manuf 17(1–2):99–106.  https://doi.org/10.1016/S0736-5845(00)00042-9 CrossRefGoogle Scholar
  95. 95.
    Honghua S, Peng L, Yucan F, Jiuhua X (2012) Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools. Chin J Aeronaut 25(5):784–790.  https://doi.org/10.1016/S1000-9361(11)60445-7 CrossRefGoogle Scholar
  96. 96.
    Oosthuizen GA, Akdogan G, Treurnicht N (2011) The performance of PCD tools in high-speed milling of Ti6Al4V. Int J Adv Manuf Technol 52(9):929–935.  https://doi.org/10.1007/s00170-010-2804-2 CrossRefGoogle Scholar
  97. 97.
    Astakhov VP, Davim JP (2008) Tools (geometry and material) and tool wear. Machining. Springer, In, pp 29–57Google Scholar
  98. 98.
    Poulachon G, Moisan A, Jawahir I (2001) Tool-wear mechanisms in hard turning with polycrystalline cubic boron nitride tools. Wear 250(1–12):576–586.  https://doi.org/10.1016/S0043-1648(01)00609-3 CrossRefGoogle Scholar
  99. 99.
    Kuppuswamy R, Yui A (2015) High-speed micromachining characteristics for the NiTi shape memory alloys. Int J Adv Manuf Technol.  https://doi.org/10.1007/s00170-015-7598-9 CrossRefGoogle Scholar
  100. 100.
    Zhu D, Zhang X, Ding H (2013) Tool wear characteristics in machining of nickel-based superalloys. Int J Mach Tools Manuf 64:60–77CrossRefGoogle Scholar
  101. 101.
    Arrazola P-J, Garay A, Iriarte L-M, Armendia M, Marya S, Le Maitre F (2009) Machinability of titanium alloys (Ti6Al4V and Ti555. 3). J Mater Process Technol 209(5):2223–2230.  https://doi.org/10.1016/j.jmatprotec.2008.06.020 CrossRefGoogle Scholar
  102. 102.
    Zhuang K, Zhu D, Zhang X, Ding H (2014) Notch wear prediction model in turning of Inconel 718 with ceramic tools considering the influence of work hardened layer. Wear 313(1–2):63–74.  https://doi.org/10.1016/j.wear.2014.02.007 CrossRefGoogle Scholar
  103. 103.
    Ezugwu E, Wang Z, Machado A (1999) The machinability of nickel-based alloys: a review. J Mater Process Technol 86(1–3):1–16.  https://doi.org/10.1016/S0924-0136(98)00314-8 CrossRefGoogle Scholar
  104. 104.
    Clayton P (1993) Tribological behavior of a titanium-nickel alloy. Wear 162–164(Part A):202–210.  https://doi.org/10.1016/0043-1648(93)90502-D CrossRefGoogle Scholar
  105. 105.
    Kaynak Y, Karaca H, Noebe R, Jawahir I (2013) Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: a comparison of tool-wear performance with dry and MQL machining. Wear 306(1):51–63.  https://doi.org/10.1016/j.wear.2013.05.011 CrossRefGoogle Scholar
  106. 106.
    Kaynak Y, Karaca HE, Noebe RD, Jawahir IS (2013) Analysis of tool-wear and cutting force components in dry, preheated, and cryogenic machining of NiTi shape memory alloys. Proced CIRP 8(Supplement C):498–503.  https://doi.org/10.1016/j.procir.2013.06.140 CrossRefGoogle Scholar
  107. 107.
    Narutaki N, Yamane Y, Hayashi K, Kitagawa T, Uehara K (1993) High-speed machining of Inconel 718 with ceramic tools. CIRP Annals-Manufacturing Technology 42(1):103–106.  https://doi.org/10.1016/S0007-8506(07)62402-0 CrossRefGoogle Scholar
  108. 108.
    Arunachalam R, Mannan M (2000) Machinability of nickel-based high temperature alloys. Mach Sci Technol 4(1):127–168.  https://doi.org/10.1080/10940340008945703 CrossRefGoogle Scholar
  109. 109.
    Ghani A, Barrow G, De Barr A (1985) Tool failure at exit during interrupted cutting. CIRP Ann Manuf Technol 34(1):71–74.  https://doi.org/10.1016/S0007-8506(07)61726-0 CrossRefGoogle Scholar
  110. 110.
    Zailani ZA, Mativenga PT (2016) Effects of chilled air on machinability of NiTi shape memory alloy. Proced CIRP 45:207–210.  https://doi.org/10.1016/j.procir.2016.02.156 CrossRefGoogle Scholar
  111. 111.
    Adharapurapu RR, Jiang F, Bingert JF, Vecchio KS (2010) Influence of cold work and texture on the high-strain-rate response of nitinol. Mater Sci Eng A 527(20):5255–5267.  https://doi.org/10.1016/j.msea.2010.04.076 CrossRefGoogle Scholar
  112. 112.
    Lin H, Lin K, Cheng I (2001) The electro-discharge machining characteristics of TiNi shape memory alloys. J Mater Sci 36(2):399–404CrossRefGoogle Scholar
  113. 113.
    Huang H, Zheng H, Lim G (2004) Femtosecond laser machining characteristics of nitinol. Appl Surf Sci 228(1):201–206.  https://doi.org/10.1016/j.apsusc.2004.01.018 CrossRefGoogle Scholar
  114. 114.
    Axinte D, Kong M (2009) An integrated monitoring method to supervise waterjet machining. CIRP Ann Manuf Technol 58(1):303–306.  https://doi.org/10.1016/j.cirp.2009.03.022 CrossRefGoogle Scholar
  115. 115.
    Kong M, Axinte D (2009) Response of titanium aluminide alloy to abrasive waterjet cutting: geometrical accuracy and surface integrity issues versus process parameters. Proc Inst Mech Eng B J Eng Manuf 223(1):19–42.  https://doi.org/10.1243/09544054JEM1226 CrossRefGoogle Scholar
  116. 116.
    Frotscher M, Kahleyss F, Simon T, Biermann D, Eggeler G (2011) Achieving small structures in thin NiTi sheets for medical applications with water jet and micro machining: a comparison. J Mater Eng Perform 20(4):776–782.  https://doi.org/10.1007/s11665-010-9789-8 CrossRefGoogle Scholar
  117. 117.
    Hattori S, Tainaka A (2007) Cavitation erosion of Ti–Ni base shape memory alloys. Wear 262(1):191–197.  https://doi.org/10.1016/j.wear.2006.05.012 CrossRefGoogle Scholar
  118. 118.
    Kaynak Y, Robertson SW, Karaca HE, Jawahir IS (2015) Progressive tool-wear in machining of room-temperature austenitic NiTi alloys: the influence of cooling/lubricating, melting, and heat treatment conditions. J Mater Process Technol 215(Supplement C):95–104.  https://doi.org/10.1016/j.jmatprotec.2014.07.015 CrossRefGoogle Scholar
  119. 119.
    Kaynak Y (2014) Machining and phase transformation response of room-temperature austenitic NiTi shape memory alloy. J Mater Eng Perform 23(9):3354–3360.  https://doi.org/10.1007/s11665-014-1058-9 CrossRefGoogle Scholar
  120. 120.
    Kaynak Y, Tobe H, Noebe R, Karaca H, Jawahir I (2014) The effects of machining on the microstructure and transformation behavior of NiTi alloy. Scr Mater 74:60–63.  https://doi.org/10.1016/j.scriptamat.2013.10.023 CrossRefGoogle Scholar
  121. 121.
    Kaynak Y, Huang B, Karaca H, Jawahir I (2017) Surface characteristics of machined NiTi shape memory alloy: the effects of cryogenic cooling and preheating conditions. J Mater Eng Perform 26(7):3597–3606.  https://doi.org/10.1007/s11665-017-2791-7 CrossRefGoogle Scholar
  122. 122.
    Kaynak Y, Karaca HE, Noebe RD, Jawahir I (2015) The effect of active phase of the work material on machining performance of a NiTi shape memory alloy. Metall Mater Trans A 46(6):2625–2636.  https://doi.org/10.1007/s11661-015-2828-1 CrossRefGoogle Scholar
  123. 123.
    Ezugwu EO, Bonney J, Yamane Y (2003) An overview of the machinability of aeroengine alloys. J Mater Process Technol 134(2):233–253.  https://doi.org/10.1016/S0924-0136(02)01042-7 CrossRefGoogle Scholar
  124. 124.
    Pusavec F, Hamdi H, Kopac J, Jawahir I (2011) Surface integrity in cryogenic machining of nickel based alloy—Inconel 718. J Mater Process Technol 211(4):773–783.  https://doi.org/10.1016/j.jmatprotec.2010.12.013 CrossRefGoogle Scholar
  125. 125.
    Bermingham M, Kirsch J, Sun S, Palanisamy S, Dargusch M (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. Int J Mach Tools Manuf 51(6):500–511.  https://doi.org/10.1016/j.ijmachtools.2011.02.009 CrossRefGoogle Scholar
  126. 126.
    Hong SY, Ding Y, W-c J (2001) Friction and cutting forces in cryogenic machining of Ti–6Al–4V. Int J Mach Tools Manuf 41(15):2271–2285.  https://doi.org/10.1016/S0890-6955(01)00029-3 CrossRefGoogle Scholar
  127. 127.
    Ding H, Shin YC (2013) Improvement of machinability of Waspalloy via laser-assisted machining. Int J Adv Manuf Technol 1–12.  https://doi.org/10.1007/s00170-012-4012-8 CrossRefGoogle Scholar
  128. 128.
    Attia H, Tavakoli S, Vargas R, Thomson V (2010) Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP Ann 59(1):83–88.  https://doi.org/10.1016/j.cirp.2010.03.093 CrossRefGoogle Scholar
  129. 129.
    Parida AK, Maity K (2017) Effect of nose radius on forces, and process parameters in hot machining of Inconel 718 using finite element analysis. Eng Sci Technol Int J 20(2):687–693.  https://doi.org/10.1016/j.jestch.2016.10.006 CrossRefGoogle Scholar
  130. 130.
    Zhuang K, Zhang X, Zhu D, Ding H (2015) Employing preheating- and cooling-assisted technologies in machining of Inconel 718 with ceramic cutting tools: towards reducing tool wear and improving surface integrity. Int J Adv Manuf Technol 80(9):1815–1822.  https://doi.org/10.1007/s00170-015-7153-8 CrossRefGoogle Scholar
  131. 131.
    Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267–275CrossRefGoogle Scholar
  132. 132.
    Sugihara T, Enomoto T (2015) High speed machining of Inconel 718 focusing on tool surface topography of CBN tool. Proced Manuf 1(Supplement C):675–682.  https://doi.org/10.1016/j.promfg.2015.09.010 CrossRefGoogle Scholar
  133. 133.
    Khan SA, Soo SL, Aspinwall DK, Sage C, Harden P, Fleming M, White A, M'Saoubi R (2012) Tool wear/life evaluation when finish turning Inconel 718 using PCBN tooling. Proced CIRP 1(Supplement C):283–288.  https://doi.org/10.1016/j.procir.2012.04.051 CrossRefGoogle Scholar
  134. 134.
    Rao GA, Kumar M, Srinivas M, Sarma D (2003) Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718. Mater Sci Eng A 355(1):114–125.  https://doi.org/10.1016/S0921-5093(03)00079-0 CrossRefGoogle Scholar
  135. 135.
    Kieback B, Neubrand A, Riedel H (2003) Processing techniques for functionally graded materials. Mater Sci Eng A 362(1):81–106.  https://doi.org/10.1016/S0921-5093(03)00578-1 CrossRefGoogle Scholar
  136. 136.
    Ramesh A, Melkote S, Allard L, Riester L, Watkins T (2005) Analysis of white layers formed in hard turning of AISI 52100 steel. Mater Sci Eng A 390(1–2):88–97.  https://doi.org/10.1016/j.msea.2004.08.052 CrossRefGoogle Scholar
  137. 137.
    Moberly WJ, Proft JL, Duerig TW, Sinclair R (1990) Deformation, twinning and thermo-mechanical strengthening of Ti50Ni47Fe3. Acta Metall Mater 38(12):2601–2612.  https://doi.org/10.1016/0956-7151(90)90272-I CrossRefGoogle Scholar
  138. 138.
    Ii S, Yamauchi K, Maruhashi Y, Nishida M (2003) Direct evidence of correlation between {201̄}B19′ and {114}B2 deformation twins in Ti–Ni shape memory alloy. Scr Mater 49(7):723–727.  https://doi.org/10.1016/S1359-6462(03)00356-7 CrossRefGoogle Scholar
  139. 139.
    Morawiec H, Stroz D, Chrobak D (1995) Effect of deformation and thermal treatment of NiTi alloy on transition sequence. J Phys IV 5(C2):C2–205–C202–210.  https://doi.org/10.1051/jp4:1995232 CrossRefGoogle Scholar
  140. 140.
    Miller DA, Lagoudas DC (2000) Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains. Smart Mater Struct 9(5):640.  https://doi.org/10.1088/0964-1726/9/5/308 CrossRefGoogle Scholar
  141. 141.
    De la Flor S, Urbina C, Ferrando F (2009) Effect of mechanical cycling on stabilizing the transformation behaviour of NiTi shape memory alloys. J Alloys Compd 469(1–2):343–349.  https://doi.org/10.1016/j.jallcom.2008.01.140 CrossRefGoogle Scholar
  142. 142.
    Mahmud AS, Yang H, Tee S, Rio G, Liu Y (2008) Effect of annealing on deformation-induced martensite stabilisation of NiTi. Intermetallics 16(2):209–214.  https://doi.org/10.1016/j.intermet.2007.09.003 CrossRefGoogle Scholar
  143. 143.
    Lin H, Wu S-K, Chou T, Kao H (1991) The effects of cold rolling on the martensitic transformation of an equiatomic TiNi alloy. Acta Metall Mater 39(9):2069–2080.  https://doi.org/10.1016/0956-7151(91)90177-3 CrossRefGoogle Scholar
  144. 144.
    Sarwar M, Persson M, Hellbergh H, Haider J (2009) Measurement of specific cutting energy for evaluating the efficiency of bandsawing different workpiece materials. Int J Mach Tools Manuf 49(12):958–965.  https://doi.org/10.1016/j.ijmachtools.2009.06.008 CrossRefGoogle Scholar
  145. 145.
    Rodrigues AR, Coelho RT (2007) Influence of the tool edge geometry on specific cutting energy at high-speed cutting. J Braz Soc Mech Sci Eng 29(3):279–283.  https://doi.org/10.1590/S1678-58782007000300007 CrossRefGoogle Scholar
  146. 146.
    Sreejith P, Krishnamurthy R, Malhotra S, Narayanasamy K (2000) Evaluation of PCD tool performance during machining of carbon/phenolic ablative composites. J Mater Process Technol 104(1):53–58.  https://doi.org/10.1016/S0924-0136(00)00549-5 CrossRefGoogle Scholar
  147. 147.
    Chou YK, Song H (2004) Tool nose radius effects on finish hard turning. J Mater Process Technol 148(2):259–268.  https://doi.org/10.1016/j.jmatprotec.2003.10.029 CrossRefGoogle Scholar
  148. 148.
    Wu S, Lin H, Chen C (1999) A study on the machinability of a Ti 49.6 Ni 50.4 shape memory alloy. Mater Lett 40(1):27–32CrossRefGoogle Scholar
  149. 149.
    Kohl M, Just E, Pfleging W, Miyazaki S (2000) SMA microgripper with integrated antagonism. Sensors Actuators A Phys 83(1):208–213.  https://doi.org/10.1016/S0924-4247(99)00385-4 CrossRefGoogle Scholar
  150. 150.
    Shishkovsky I, Volova L, Kuznetsov M, Morozov YG, Parkin I (2008) Porous biocompatible implants and tissue scaffolds synthesized by selective laser sintering from Ti and NiTi. J Mater Chem 18(12):1309–1317.  https://doi.org/10.1039/B715313A CrossRefGoogle Scholar
  151. 151.
    Weinert K, Petzoldt V (2008) Machining NiTi micro-parts by micro-milling. Mater Sci Eng A 481–482(Supplement C):672–675.  https://doi.org/10.1016/j.msea.2006.10.220 CrossRefGoogle Scholar
  152. 152.
    Fu Y, Du H, Huang W, Zhang S, Hu M (2004) TiNi-based thin films in MEMS applications: a review. Sensors Actuators A Phys 112(2–3):395–408.  https://doi.org/10.1016/j.sna.2004.02.019 CrossRefGoogle Scholar
  153. 153.
    Aramcharoen A, Mativenga P (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33(4):402–407.  https://doi.org/10.1016/j.precisioneng.2008.11.002 CrossRefGoogle Scholar
  154. 154.
    Kale A, Khanna N (2017) A review on cryogenic machining of super alloys used in aerospace industry. Proced Manuf 7:191–197.  https://doi.org/10.1016/j.promfg.2016.12.047 CrossRefGoogle Scholar
  155. 155.
    Yuan S, Yan L, Liu W, Liu Q (2011) Effects of cooling air temperature on cryogenic machining of Ti–6Al–4V alloy. J Mater Process Technol 211(3):356–362.  https://doi.org/10.1016/j.jmatprotec.2010.10.009 CrossRefGoogle Scholar
  156. 156.
    Hong SY, Markus I, W-c J (2001) New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 41(15):2245–2260CrossRefGoogle Scholar
  157. 157.
    Brinson LC, Schmidt I, Lammering R (2004) Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy. J Mech Phys Solids 52(7):1549–1571.  https://doi.org/10.1016/j.jmps.2004.01.001 CrossRefzbMATHGoogle Scholar
  158. 158.
    Markopoulos AP (2012) Finite element method in machining processes. Springer Science & Business Media.Google Scholar
  159. 159.
    Kaynak Y, Manchiraju S, Jawahir I (2015) Modeling and simulation of machining-induced surface integrity characteristics of NiTi alloy. Proced CIRP 31:557–562.  https://doi.org/10.1016/j.procir.2015.03.071 CrossRefGoogle Scholar
  160. 160.
    Li Q, Yu J-Y, Mu B-C, Sun X-D (2006) BP neural network prediction of the mechanical properties of porous NiTi shape memory alloy prepared by thermal explosion reaction. Mater Sci Eng A 419(1):214–217.  https://doi.org/10.1016/j.msea.2005.12.027 CrossRefGoogle Scholar
  161. 161.
    Nemat-Nasser S, Su Y, Guo W-G, Isaacs J (2005) Experimental characterization and micromechanical modeling of superelastic response of a porous NiTi shape-memory alloy. J Mech Phys Solids 53(10):2320–2346.  https://doi.org/10.1016/j.jmps.2005.03.009 CrossRefGoogle Scholar
  162. 162.
    Ashrafi MJ, Arghavani J, Naghdabadi R, Sohrabpour S, Auricchio F (2016) Theoretical and numerical modeling of dense and porous shape memory alloys accounting for coupling effects of plasticity and transformation. Int J Solids Struct 88-89:248–262.  https://doi.org/10.1016/j.ijsolstr.2016.03.003 CrossRefGoogle Scholar
  163. 163.
    Williams KA, Chiu GTC, Bernhard RJ (2005) Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber. J Sound Vib 280(1):211–234.  https://doi.org/10.1016/j.jsv.2003.12.040 CrossRefGoogle Scholar
  164. 164.
    Paradis A, Terriault P, Brailovski V (2009) Modeling of residual strain accumulation of NiTi shape memory alloys under uniaxial cyclic loading. Comput Mater Sci 47(2):373–383.  https://doi.org/10.1016/j.commatsci.2009.08.013 CrossRefGoogle Scholar
  165. 165.
    Lagoudas D, Hartl D, Chemisky Y, Machado L, Popov P (2012) Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int J Plast 32-33:155–183.  https://doi.org/10.1016/j.ijplas.2011.10.009 CrossRefGoogle Scholar
  166. 166.
    Petrini L, Migliavacca F, Massarotti P, Schievano S, Dubini G, Auricchio F (2005) Computational studies of shape memory alloy behavior in biomedical applications. J Biomech Eng 127(4):716–725.  https://doi.org/10.1115/1.1934203 CrossRefGoogle Scholar
  167. 167.
    Umbrello D (2008) Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. J Mater Process Technol 196(1):79–87.  https://doi.org/10.1016/j.jmatprotec.2007.05.007 CrossRefGoogle Scholar
  168. 168.
    Oezkaya E, Biermann D (2018) A new reverse engineering method to combine FEM and CFD simulation three-dimensional insight into the chipping zone during the drilling of Inconel 718 with internal cooling. Mach Sci Technol 1–18. doi: https://doi.org/10.1080/10910344.2017.1415933
  169. 169.
    Oezkaya E, Beer N, Biermann D (2016) Experimental studies and CFD simulation of the internal cooling conditions when drilling Inconel 718. Int J Mach Tools Manuf 108:52–65.  https://doi.org/10.1016/j.ijmachtools.2016.06.003 CrossRefGoogle Scholar
  170. 170.
    Beer N, Özkaya E, Biermann D (2014) Drilling of Inconel 718 with geometry-modified twist drills. Procedia CIRP 24:49–55.  https://doi.org/10.1016/j.procir.2014.07.124 CrossRefGoogle Scholar
  171. 171.
    Biermann D, Bücker M, Tiffe M, Özkaya E (2017) Experimental investigations for a simulative optimization of the cutting edge design of twist drills used in the machining of Inconel 718. Proced Manuf 14:8–16.  https://doi.org/10.1016/j.promfg.2017.11.002 CrossRefGoogle Scholar
  172. 172.
    Chen G, Ren C, Yang X, Jin X, Guo T (2011) Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. Int J Adv Manuf Technol 56(9):1027–1038.  https://doi.org/10.1007/s00170-011-3233-6 CrossRefGoogle Scholar
  173. 173.
    Usui E, Shirakashi T, Kitagawa T (1978) Analytical prediction of three dimensional cutting process—part 3: cutting temperature and crater wear of carbide tool. J Eng Ind 100(2):236–243.  https://doi.org/10.1115/1.3439415 CrossRefGoogle Scholar
  174. 174.
    Thepsonthi T, Özel T (2013) Experimental and finite element simulation based investigations on micro-milling Ti-6Al-4V titanium alloy: effects of cBN coating on tool wear. J Mater Process Technol 213(4):532–542.  https://doi.org/10.1016/j.jmatprotec.2012.11.003 CrossRefGoogle Scholar
  175. 175.
    Ranganath S, Guo C, Hegde P (2009) A finite element modeling approach to predicting white layer formation in nickel superalloys. CIRP Ann 58(1):77–80.  https://doi.org/10.1016/j.cirp.2009.03.109 CrossRefGoogle Scholar
  176. 176.
    Ozel T, Llanos I, Soriano J, Arrazola PJ (2011) 3D finite element modelling of chip formation process for machining INCONEL 718: comparison of FE software predictions. Mach Sci Technol 15(1):21–46.  https://doi.org/10.1080/10910344.2011.557950 CrossRefGoogle Scholar
  177. 177.
    Mitrofanov AV, Babitsky VI, Silberschmidt VV (2004) Finite element analysis of ultrasonically assisted turning of Inconel 718. J Mater Process Technol 153-154:233–239.  https://doi.org/10.1016/j.jmatprotec.2004.04.299 CrossRefGoogle Scholar
  178. 178.
    Özel T, Ulutan D (2012) Prediction of machining induced residual stresses in turning of titanium and nickel based alloys with experiments and finite element simulations. CIRP Ann 61(1):547–550.  https://doi.org/10.1016/j.cirp.2012.03.100 CrossRefGoogle Scholar
  179. 179.
    Jafarian F, Imaz Ciaran M, Umbrello D, Arrazola PJ, Filice L, Amirabadi H (2014) Finite element simulation of machining Inconel 718 alloy including microstructure changes. Int J Mech Sci 88:110–121.  https://doi.org/10.1016/j.ijmecsci.2014.08.007 CrossRefGoogle Scholar
  180. 180.
    Uhlmann E, von der Schulenburg MG, Zettier R (2007) Finite element modeling and cutting simulation of Inconel 718. CIRP Ann 56(1):61–64.  https://doi.org/10.1016/j.cirp.2007.05.017 CrossRefGoogle Scholar
  181. 181.
    Shaw MC, Cookson J (1984) Metal cutting principles. Clarendon press Oxford,Google Scholar
  182. 182.
    Ramesh A, Melkote SN (2008) Modeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel. Int J Mach Tools Manuf 48(3–4):402–414.  https://doi.org/10.1016/j.ijmachtools.2007.09.007 CrossRefGoogle Scholar
  183. 183.
    Schulze V, Michna J, Zanger F, Pabst R (2011) Modeling the process-induced modifications of the microstructure of work piece surface zones in cutting processes. In: Advanced Materials Research. Trans Tech Publ, p 371–380. doi: https://doi.org/10.4028/www.scientific.net/AMR.223.371 CrossRefGoogle Scholar
  184. 184.
    Auricchio F, Taylor R (1996) Shape-memory-alloy superelastic behavior: 3D finite-element simulations. In: Proceedings-SPIE the international society for optical engineering. SPIE international society for optical, p 487–492Google Scholar
  185. 185.
    Anand L, Gurtin ME (2003) Thermal effects in the superelasticity of crystalline shape-memory materials. J Mech Phys Solids 51(6):1015–1058.  https://doi.org/10.1016/S0022-5096(03)00017-6 MathSciNetCrossRefzbMATHGoogle Scholar
  186. 186.
    Shahmir H, Nili-Ahmadabadi M, Mansouri-Arani M, Langdon TG (2013) The processing of NiTi shape memory alloys by equal-channel angular pressing at room temperature. Mater Sci Eng A 576:178–184.  https://doi.org/10.1016/j.msea.2013.04.001 CrossRefGoogle Scholar
  187. 187.
    Shri DNA, Tsuchiya K, Yamamoto A (2014) Surface characterization of TiNi deformed by high-pressure torsion. Appl Surf Sci 289:338–344.  https://doi.org/10.1016/j.apsusc.2013.10.161 CrossRefGoogle Scholar
  188. 188.
    Tang W (1997) Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys. Metall Mater Trans A 28(3):537–544.  https://doi.org/10.1007/s11661-997-0041-6 CrossRefGoogle Scholar
  189. 189.
    Yang SY, Dui GS (2013) Temperature analysis of one-dimensional NiTi shape memory alloys under different loading rates and boundary conditions. Int J Solids Struct 50(20):3254–3265.  https://doi.org/10.1016/j.ijsolstr.2013.05.026 CrossRefGoogle Scholar
  190. 190.
    Ortin J, Planes A (1988) Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall 36(8):1873–1889CrossRefGoogle Scholar
  191. 191.
    Hamilton RF, Sehitoglu H, Chumlyakov Y, Maier HJ (2004) Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater 52(11):3383–3402.  https://doi.org/10.1016/j.actamat.2004.03.038 CrossRefGoogle Scholar
  192. 192.
    Ramaiah K, Saikrishna C, Bhaumik S (2014) Ni24. 7Ti50. 3Pd25. 0 high temperature shape memory alloy with narrow thermal hysteresis and high thermal stability. Mater Des (1980–2015) 56:78–83.  https://doi.org/10.1016/j.matdes.2013.10.079 CrossRefGoogle Scholar
  193. 193.
    Pelton AR, Huang GH, Moine P, Sinclair R (2012) Effects of thermal cycling on microstructure and properties in nitinol. Mater Sci Eng A 532:130–138.  https://doi.org/10.1016/j.msea.2011.10.073 CrossRefGoogle Scholar
  194. 194.
    Karaman I, Karaca HE, Luo Z, Maier H (2003) The effect of severe marforming on shape memory characteristics of a Ti-rich NiTi alloy processed using equal channel angular extrusion. Metall Mater Trans A 34(11):2527–2539.  https://doi.org/10.1007/s11661-003-0012-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringEskisehir Technical UniversityEskisehirTurkey

Personalised recommendations