Advertisement

Higher cellular interaction and faster production of natural rubber latex LbL films by spraying method

  • Christiane Pinto DaviEmail author
  • Christiane Bertachini Lombello
  • Mariselma Ferreira
ORIGINAL ARTICLE
  • 19 Downloads

Abstract

Natural rubber latex (NRL) from Hevea brasiliensis can accelerate wound healing, but membranes made of NRL have shown low cellular interaction limiting their application as implants. By employing dipping layer-by-layer (LbL) technique, we were previously able to glow human fibroblast cells on NRL films. But this method is time consuming which hinders industrialization. Therefore, NRL films were produced using polyethyleneimine (PEI) by spraying (sp) LbL method, which proved to be 10 times faster than dipping techniques. Rinsed and non-rinsed sp films were produced by triggering the spray devices five times for each material. Both (PEI/NRL)5 and (PEI/NRL)15 spraying and dipping films were then analyzed by UV-vis, AFM, and contact angle measurements. In order to evaluate the cellular interaction, Vero cells were directly cultivated on the LbL films up to 24 h. Results showed that despite non-rinsed sp films having lower amount of material than dipping ones, Vero cells adhere similarly on both. Rinsed (PEI/NRL)5 sp films, on the other hand, presented higher amount of cellular attachment as well as smaller NRL particles on the films’ surface. Thus, it was possible to increase cellular interaction of NRL and produce films 10 times faster by employing spraying LbL method.

Keywords

Natural rubber latex Increase of cellular interaction Soft colloid particle films LbL films Spraying parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are thankful to Institute Charles Sadron of the Université de Strasbourg for the technical support on the PDI analyses. We also thank Empresa Brasileira de Pesquisa Agropecuária—Embrapa and Dr. Paulo Gonçalves from the Instituto Agronômico de Campinas—IAC for kindly providing the natural rubber latex.

Funding information

This work if financially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) 12/20690-9, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CAPES, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Universidade Federal do ABC (UFABC), and Rede nBioNet (Brazil).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ferreira M, Mendonca RJ, Coutinho-Netto J, Mulato M (2009) Angiogenic properties of natural rubber latex biomembranes and the serum fraction of Hevea brasiliensis. Braz J Phys 39(3):564–569CrossRefGoogle Scholar
  2. 2.
    Cipriani Frade MA, Netto JC, Gomes FG, Mazzucato EL, Moretti de Andrade TA, Foss NT (2011) Natural-biomembrane dressing and hypersensitivity. An Bras Dermatol 86(5):885–891CrossRefGoogle Scholar
  3. 3.
    Andrade TAM, Iyer A, Das PK, Foss NT, Garcia SB, Coutinho-Netto J, Jordao AA Jr, Frade MAC (2011) The inflammatory stimulus of a natural latex biomembrane improves healing in mice. Braz J Med Biol Res 44(10):1036–1047CrossRefGoogle Scholar
  4. 4.
    Floriano JF, Lima Silveira da Mota LS, Furtado EL, Vieira Rossetto VJ, Graeff CFO (2014) Biocompatibility studies of natural rubber latex from different tree clones and collection methods. J Mater Sci-Mater Med 25:461–470.  https://doi.org/10.1007/s10856-013-5089-9 CrossRefGoogle Scholar
  5. 5.
    Penhavel MVC, Tavares VH, Carneiro FP, JBd S (2016) Effect of Hevea brasiliensis latex sap gel on healing of acute skin wounds induced on the back of rats. Revista do Colégio Brasileiro de Cirurgiões 43(1):48–53CrossRefGoogle Scholar
  6. 6.
    Coutinho J, Mrue F (2005) Microporous latex membrane useful in clinical applications such as wound healing, is obtained by applying latex suspension to surface to produce latex coated surface, and subjecting latex coated surface to various temperatures. WO2005008932-A2; US2005049331-A1,Google Scholar
  7. 7.
    Floriano JF, Neto FC, da Mota LSLS, Furtado EL, Ferreira RS, Barraviera B, Gonçalves PJ, de Almeida LM, Borges FA, Herculano RD (2016) Comparative study of bone tissue accelerated regeneration by latex membranes from Hevea brasiliensis and Hancornia speciosa. Biomedical Physics Eng Express 2(4):045007CrossRefGoogle Scholar
  8. 8.
    Borges FA, de Barros NR, Garms BC, Miranda MCR, Gemeinder JLP, Ribeiro-Paes JT, Silva RF, de Toledo KA, Herculano RD (2017) Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. J Appl Polym Sci 134 (39)Google Scholar
  9. 9.
    Furuya M, Shimono N, Yamazaki K, Domura R, Okamoto M (2017) Cytotoxicity and anticancer activity of natural rubber latex particles for cancer cells. Mater Today Chem 5:63–71CrossRefGoogle Scholar
  10. 10.
    Giordani R, Regli P, Buc J (2002) Antifungal effect of Hevea brasiliensis latex with various fungi. Its synergistic action with amphotericin B against Candida albicans. Mycoses 45(11–12):476–481Google Scholar
  11. 11.
    Daruliza KMA, Lam KL, Yang KL, Priscilla JT, Sunderasan E, Ong MT (2011) Anti-fungal effect of Hevea brasiliensis latex C-serum on Aspergillus niger. Eur Rev Med Pharmacol Sci 15(9):1027–1033Google Scholar
  12. 12.
    Yonashiro Marcelino M, Azevedo Borges F, Martins Costa AF, de Lacorte Singulani J, Ribeiro NV, Barcelos Costa-Orlandi C, Garms BC, Soares Mendes-Giannini MJ, Herculano RD, Fusco-Almeida AM (2018) Antifungal activity of fluconazole-loaded natural rubber latex against Candida albicans. Future Microbiol 13(3):359–367CrossRefGoogle Scholar
  13. 13.
    Frade MAC, Valverde RV, de Assis RVC, Coutinho-Netto J, Foss NT (2001) Chronic phlebopathic cutaneous ulcer: a therapeutic proposal. Int J Dermatol 40(3):238–240CrossRefGoogle Scholar
  14. 14.
    Mrue F, Netto JC, Ceneviva R, Lachat JJ, Thomazini JA, Tambelini H (2004) Evaluation of the biocompatibility of a new biomembrane. Mater Res 7:277–283.  https://doi.org/10.1590/s1516-14392004000200010 CrossRefGoogle Scholar
  15. 15.
    Sampaio RB, Mendonca RJ, Simioni AR, Costa RA, Siqueira RC, Correa VM, Tedesco AC, Haddad A, Netto JC, Jorge R (2010) Rabbit retinal neovascularization induced by latex angiogenic-derived fraction: an experimental model. Curr Eye Res 35(1):56–62.  https://doi.org/10.3109/02713680903374216 CrossRefGoogle Scholar
  16. 16.
    Herculano RD, Guimaraes SAC, Belmonte GC, Duarte MAH, de Oliveira ON, Kinoshita A, Graeff CFD (2010) Metronidazole release using natural rubber latex as matrix. Mater Res-Ibero-Am J Mater 13(1):57–61Google Scholar
  17. 17.
    Herculano RD, Tzu LC, Silva CP, Brunello CA, Alencar de Queiroz AA, Kinoshita A, de Oliveira Graeff CF (2011) Nitric oxide release using natural rubber latex as matrix. Mater Res-Ibero-Am J Mater 14:355–359.  https://doi.org/10.1590/s1516-14392011005000055 Google Scholar
  18. 18.
    Aielo PB, Borges FA, Romeira KM, Miranda MCR, Arruda LBd, Filho LPN, Drago BdC, Herculano RD (2014) Evaluation of sodium diclofenac release using natural rubber latex as carrier. Materials Research:0-0.Google Scholar
  19. 19.
    Guidelli EJ, Kinoshita A, Ramos AP, Baffa O (2013) Silver nanoparticles delivery system based on natural rubber latex membranes. J Nanopart Res 15.  https://doi.org/10.1007/s11051-013-1536-2
  20. 20.
    de Barros NR, Miranda MCR, Borges FA, de Mendonça RJ, Cilli EM, Herculano RD (2016) Oxytocin sustained release using natural rubber latex membranes. Int J Pept Res Ther 22(4):435–444CrossRefGoogle Scholar
  21. 21.
    Myazaki CM, Ferreira M, Job AE, Constantino CJL, Riul Jr A (2007) Ultra-thin films of natural rubber latex. Paper presented at the 5Th Brazilian Materials Research Society Meeting SBPMat, Rio de Janeiro,Google Scholar
  22. 22.
    Cena C, Malmonge L, Malmonge J (2017) Layer-by-layer thin films of polyaniline alternated with natural rubber and their potential application as a chemical sensor. J Polym Res 24(1):9CrossRefGoogle Scholar
  23. 23.
    Davi CP, Galdino LFMD, Borelli P, Oliveira ON Jr, Ferreira M (2012) Natural rubber latex LbL films: characterization and growth of fibroblasts. J Appl Polym Sci 125(3):2137–2147.  https://doi.org/10.1002/app.36309 CrossRefGoogle Scholar
  24. 24.
    Rippel MM, Lee LT, Leite CAP, Galembeck F (2003) Skim and cream natural rubber particles: colloidal properties, coalescence and film formation. J Colloid Interface Sci 268(2):330–340.  https://doi.org/10.1016/j.jcis.2003.07.046 CrossRefGoogle Scholar
  25. 25.
    d’Auzac J, Jacob J-L, Chrestin H (1989) Physiology of rubber tree latex. CRC Press, Inc., Boca RatonGoogle Scholar
  26. 26.
    Nawamawat K, Sakdapipanich JT, Ho CC, Ma Y, Song J, Vancso JG (2011) Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids and Surfaces A—Physicochemical and Engineering Aspects 390(1–3):157–166.  https://doi.org/10.1016/j.colsurfa.2011.09.021 Google Scholar
  27. 27.
    Neves WFP, Graeff CFD, Ferreira M, Mulato M, Bernardes MS, Coutinho-Netto J (2006) Elastic properties of natural rubber tubes produced by dip-coating. J Appl Polym Sci 100(1):702–707.  https://doi.org/10.1002/app.23416 CrossRefGoogle Scholar
  28. 28.
    Neves-Junior WFP, Ferreira M, Alves MCO, Graeff CFO, Mulato M, Coutinho-Netto J, Bernardes MS (2006) Influence of fabrication process on the final properties of natural-rubber latex tubes for vascular prosthesis. Braz J Phys 36(2B):586–591CrossRefGoogle Scholar
  29. 29.
    Iler RK (1966) Multilayers of colloidal particles. J Colloid Interface Sci 21:569-&.  https://doi.org/10.1016/0095-8522(66)90018-3 CrossRefGoogle Scholar
  30. 30.
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237CrossRefGoogle Scholar
  31. 31.
    Decher G (2002) Polyelectrolyte multilayer, an overview. In: Decher G, Schlenoff JB (eds) Multilayer thin films. Wiley-VCH Verlag GmbH & Co.Google Scholar
  32. 32.
    Lvov Y, Decher G, Mohwald H (1993) Assembly, structural characterization, and thermal-behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9(2):481–486.  https://doi.org/10.1021/la00026a020 CrossRefGoogle Scholar
  33. 33.
    Schlenoff JB, Dubas ST, Farhat T (2000) Sprayed polyelectrolyte multilayers. Langmuir 16(26):9968–9969CrossRefGoogle Scholar
  34. 34.
    Izquierdo A, Ono SS, Voegel JC, Schaaff P, Decher G (2005) Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir 21(16):7558–7567.  https://doi.org/10.1021/la047407s CrossRefGoogle Scholar
  35. 35.
    Felix O, Zheng Z, Cousin F, Decher G (2009) Are sprayed LbL-films stratified? A first assessment of the nanostructure of spray-assembled multilayers by neutron reflectometry. Comptes Rendus Chimie 12(1–2):225–234.  https://doi.org/10.1016/j.crci.2008.09.009 CrossRefGoogle Scholar
  36. 36.
    Richardson JJ, Björnmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348(6233):aaa2491CrossRefGoogle Scholar
  37. 37.
    Krogman K, Cohen R, Hammond P, Rubner M, Wang B (2013) Industrial-scale spray layer-by-layer assembly for production of biomimetic photonic systems. Bioinspiration & Biomimetics 8(4):045005CrossRefGoogle Scholar
  38. 38.
    Tang H, Zhang G, Ji S (2013) Rapid assembly of polyelectrolyte multilayer membranes using an automatic spray system. AICHE J 59(1):250–257CrossRefGoogle Scholar
  39. 39.
    Thurston G, Jaggi B, Palcic B (1988) Measurement of cell motility and morphology with an automated microscope system. Cytometry 9:411–417CrossRefGoogle Scholar
  40. 40.
    Pichon BP, Louet P, Felix O, Drillon M, Begin-Colin S, Decher G (2011) Magnetotunable hybrid films of stratified Iron oxide nanoparticles assembled by the layer-by-layer technique. Chem Mater 23(16):3668–3675.  https://doi.org/10.1021/cm201139s CrossRefGoogle Scholar
  41. 41.
    Wagberg L, Decher G, Norgren M, Lindstroem T, Ankerfors M, Axnaes K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795.  https://doi.org/10.1021/la702481v CrossRefGoogle Scholar
  42. 42.
    Dierendonck M, De Koker S, De Rycke R, De Geest BG (2014) Just spray it—LbL assembly enters a new age. Soft Matter 10(6):804–807CrossRefGoogle Scholar
  43. 43.
    Zaucha M, Adamczyk Z, Barbasz J (2011) Zeta potential of particle bilayers on mica: a streaming potential study. J Colloid Interface Sci 360(1):195–203.  https://doi.org/10.1016/j.jcis.2011.02.025 CrossRefGoogle Scholar
  44. 44.
    Kotov NA (2002) Layer-by-layer assembly of nanoparticles and nanocolloids: intermolecular interactions, structure and materials perspectives. In: Decher G, Schlenoff JB (eds) Multilayer thin films: sequential assembly of nanocomposite materials. WILEY-VCH Verlag GmbH & Co. KGaA.Google Scholar
  45. 45.
    Mamedov A, Ostrander J, Aliev F, Kotov NA (2000) Stratified assemblies of magnetite nanoparticles and montmorillonite prepared by the layer-by-layer assembly. Langmuir 16(8):3941–3949CrossRefGoogle Scholar
  46. 46.
    Williams SKR, Lee D (2006) Field-flow fractionation of proteins, polysaccharides, synthetic polymers, and supramolecular assemblies. J Sep Sci 29(12):1720–1732.  https://doi.org/10.1002/jssc.200600151 CrossRefGoogle Scholar
  47. 47.
    Velikov K, Velev O (2006) Novel materials derived from particles assembled on liquid surfaces. Colloidal particles at liquid surfaces., 1 edition edn. Cambridge University Press.  https://doi.org/10.1017/CBO9780511536670
  48. 48.
    de Gennes P-G, Brochard-Wyart F, Quere D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. SpringerGoogle Scholar
  49. 49.
    J.L. M, T.J. W (2009) Protein interactions at material surfaces. In: R. N (ed) Biomedical materials. Springer NY, USA, pp 215 - 237.  https://doi.org/10.1007/978-0-387-84872-3
  50. 50.
    Cabrera FC, Dognani G, Faita FL, dos Santos RJ, Agostini DL, Bechtold IH, Crespilho FN, Job AE (2016) Vulcanization, centrifugation, water-washing, and polymeric covering processes to optimize natural rubber membranes applied to microfluidic devices. J Mater Sci 51(6):3003–3012CrossRefGoogle Scholar
  51. 51.
    Ammerman NC, Beier-Sexton M, Azad AF (2008) Growth and maintenance of Vero cell lines. Current protocols in microbiology Appendix 4 (Appendix 4E).  https://doi.org/10.1002/9780471729259.mca04es11

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Engenharia e Ciências Sociais Aplicadas, CECSUniversidade Federal do ABCSao Bernardo do CampoBrazil
  2. 2.Centro de Ciências Naturais e Humanas – CCNHUniversidade Federal do ABCSanto AndreBrazil

Personalised recommendations