Advertisement

Machine chattering identification based on the fractional-order chaotic synchronization dynamic error

  • Chao-Kuang Chen
  • Yu-Chung LiEmail author
ORIGINAL ARTICLE
  • 33 Downloads

Abstract

The topic of this study is using the fractional-order chaotic synchronization system to identify chattering that CNC machines produce during production. The appearance of chattering indicates instability during the metal milling process which will not only cause abnormal wear on the tool, but can also decrease the precision of the work piece significantly. Thus, identification of chattering has always been a very important research topic. However, previous chattering identification mostly relied on the experience of the operator. Most past studies were based on the energy perspective. When the main frequency in the frequency domain analysis to the existing spindle rotation frequency ratio is a non-integer multiple, then chattering has occurred. We propose a brand new chattering identification method which uses the synchronization error plane centroid in fractional-order chaotic synchronization system to find chattering. Thus, we can simply use position of the chaotic centroid to determine whether or not the current cutting status has chattering. The result of this study shows that the method we proposed can effectively identify chattering and that the identification result is very accurate and useful.

Keywords

Chatter identification Fractional-order Chaotic synchronization dynamic error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Technical support and tool data have been provided by Professor Her-Terng Yau and Mr. Jin-Yu Chang, respectively.

Funding

This research is financially supported by the Ministry of Science and Technology of R.O.C. under the projects no. MOST- 107-2218-E-167 -001 is greatly appreciated.

References

  1. 1.
    Levant A (2010) Chattering analysis. IEEE Trans Autom Control 55(6):1380–1389.  https://doi.org/10.1109/TAC.2010.2041973 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Altintas Y, Eynian M, Onozuka H (2008) Identification of dynamic cutting force coefficients and chatter stability with process damping. CIRP Ann 57(1):371–374.  https://doi.org/10.1016/j.cirp.2008.03.048 CrossRefGoogle Scholar
  3. 3.
    Dombovari Z, Barton DAW, Eddie Wilson R, Stepan G (2011) On the global dynamics of chatter in the orthogonal cuttingmodel. Int J Nonlin Mech 46(1):330–338.  https://doi.org/10.1016/j.ijnonlinmec.2010.09.016 CrossRefGoogle Scholar
  4. 4.
    Fu Z, Zhang X, Wang X, Yang W (2014) Analytical modeling of chatter vibration in orthogonal cutting using a predictive force model. Int J Mech Sci 88:145–153.  https://doi.org/10.1016/j.ijmecsci.2014.08.005 CrossRefGoogle Scholar
  5. 5.
    Rusinek R, Wiercigroch M, Wahi P (2014) Modelling of frictional chatter in metal cutting. Int J Mech Sci 89:167–176.  https://doi.org/10.1016/j.ijmecsci.2014.08.020 CrossRefGoogle Scholar
  6. 6.
    Cao H, Yue Y, Chen X, Zhang X (2017) Chatter detection in milling process based on synchrosqueezing transform of sound signals. Int J Adv Manuf Technol 89(9):2747–2755.  https://doi.org/10.1007/s00170-016-9660-7 CrossRefGoogle Scholar
  7. 7.
    Hynynen KM, Ratava J, Lindh T, Rikkonen M, Ryynänen V, Lohtander M, Varis J (2014) Chatter detection in turning processes using coherence of acceleration and audio signals. J Manuf Sci Eng 136(4):044503–044504.  https://doi.org/10.1115/1.4026948 CrossRefGoogle Scholar
  8. 8.
    Thaler T, Potočnik P, Bric I, Govekar E (2014) Chatter detection in band sawing based on discriminant analysis of sound features. Appl Acoust 77:114–121.  https://doi.org/10.1016/j.apacoust.2012.12.004 CrossRefGoogle Scholar
  9. 9.
    Liu H, Chen Q, Li B, Mao X, Mao K, Peng F (2011) On-line chatter detection using servo motor current signal in turning. SCIENCE CHINA Technol Sci 54(12):3119–3129.  https://doi.org/10.1007/s11431-011-4595-6 CrossRefzbMATHGoogle Scholar
  10. 10.
    Lamraoui M, Thomas M, El Badaoui M (2014) Cyclostationarity approach for monitoring chatter and tool wear in high speed milling. Mech Syst Signal Process 44(1):177–198.  https://doi.org/10.1016/j.ymssp.2013.05.001 CrossRefGoogle Scholar
  11. 11.
    Uekita M, Takaya Y (2017) Tool condition monitoring technique for deep-hole drilling of large components based on chatter identification in time–frequency domain. Measurement 103:199–207.  https://doi.org/10.1016/j.measurement.2017.02.035 CrossRefGoogle Scholar
  12. 12.
    Vela-Martínez L, Carlos Jauregui-Correa J, Rodriguez E, Alvarez-Ramirez J (2010) Using detrended fluctuation analysis to monitor chattering in cutter tool machines. Int J Mach Tools Manuf 50(7):651–657.  https://doi.org/10.1016/j.ijmachtools.2010.03.012 CrossRefGoogle Scholar
  13. 13.
    Sun Y, Zhuang C, Xiong Z (2015) A scale factor-based interpolated DFT for chatter frequency estimation. IEEE Trans Instrum Meas 64(10):2666–2678.  https://doi.org/10.1109/TIM.2015.2421711 CrossRefGoogle Scholar
  14. 14.
    Chen GS, Zheng QZ (2018) Online chatter detection of the end milling based on wavelet packet transform and support vector machine recursive feature elimination. Int J Adv Manuf Technol 95(1–4):775–784.  https://doi.org/10.1007/s00170-017-1242-9 CrossRefGoogle Scholar
  15. 15.
    Liu C, Zhu L, Ni C (2018) Chatter detection in milling process based on VMD and energy entropy. Mech Syst Signal Process 105:169–182.  https://doi.org/10.1016/j.ymssp.2017.11.046 CrossRefGoogle Scholar
  16. 16.
    Cao HR, Yue YT, Chen XF, Zhang XW (2018) Chatter detection based on synchrosqueezing transform and statistical indicators in milling process. Int J Adv Manuf Technol 95(1–4):961–972.  https://doi.org/10.1007/s00170-017-1283-0 CrossRefGoogle Scholar
  17. 17.
    Kuo YC, Hsieh CT, Yau HT, Li YC (2014) Research and Development of a chaotic signal synchronization error dynamics-based ball bearing fault Diagnostor. Entropy 16(10):5358–5376.  https://doi.org/10.3390/e16105358 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yau HT, Kuo YC, Chen CL, Li YC (2016) Ball bearing test-rig research and fault diagnosis investigation. IET Sci Meas Technol 10(4):259–265.  https://doi.org/10.1049/iet-smt.2015.0146 CrossRefGoogle Scholar
  19. 19.
    Yau HT, Wu SY, Chen CL, Li YC (2016) Fractional-order chaotic self-synchronization-based tracking faults diagnosis of ball bearing systems. IEEE Trans Ind Electron 63(6):3824–3833.  https://doi.org/10.1109/tie.2016.2522941 CrossRefGoogle Scholar
  20. 20.
    MIKE Machine industry co.,LTD . http://www.mike-cnc.com.tw/
  21. 21.
    Chen HK, Lee CI (2004) Anti-control of chaos in rigid body motion. Chaos, Solitons Fractals 21(4):957–965.  https://doi.org/10.1016/j.chaos.2003.12.034 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations