Advertisement

Investigation and modeling of microgrooves generated on diamond grinding wheel by abrasive waterjet based on Box–Behnken experimental design

  • Zhenzhong Zhang
  • Peng YaoEmail author
  • Chuanzhen Huang
  • Jun Wang
  • Donglin Xue
  • Weijie Deng
  • Zhiyu Zhang
ORIGINAL ARTICLE
  • 53 Downloads

Abstract

Precision profile grinding with textured diamond wheels is an alternative for generating microstructures on the ceramic mold for glass molding. In this work, a novel texturing strategy employing abrasive waterjet for superabrasive grinding wheels was proposed to generate controllable microtexture profile on the diamond wheel surface efficiently. The quadratic backward-eliminated regression models were developed using Box–Behnken response surface design in the abrasive waterjet micromachining of diamond grinding wheel sample. The effect of operating parameters and their interaction on the depth and width of groove were investigated. The surface speed and standoff distance were found to be main controlling variables on the depth and width of groove, respectively. A consistently good agreement was confirmed between the predicted values and the experimental values under acceptable errors.

Keywords

Texturing Box–Behnken design Abrasive waterjet Prediction model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This work was supported by National Natural Science Foundation of China (No. 51875321), Shandong Province Natural Science Foundation (Grant No. ZR2018MEE019, ZR2018ZB0521) and Key Laboratory of Optical System Advanced Manufacturing Technology (Grant No. Y6SY1FJ160).

References

  1. 1.
    Brinksmeier E, Riemer O, Gläbe RM: Fabrication of complex optical components. Springer Berlin Heidelberg, 2013Google Scholar
  2. 2.
    Zhou TF, Liu X, Liang Z, Liu Y, Xie J, Wang X (2017) Recent advancements in optical microstructure fabrication through glass molding process. Front Mech Eng 12:46–65CrossRefGoogle Scholar
  3. 3.
    Guo B, Zhao QL (2017) Ultrasonic vibration assisted grinding of hard and brittle linear micro-structured surfaces. Precis Eng 48:98–106CrossRefGoogle Scholar
  4. 4.
    Chen S, Lin S (2011) Development of an extremely thin grinding-tool for grinding microgrooves in optical glass. J Mater Process Technol 211:1581–1589CrossRefGoogle Scholar
  5. 5.
    Denkena B, Köhler J, Wang B (2010) Manufacturing of functional riblet structures by profile grinding. CIRP J Manuf Sci Technol 3:14–26CrossRefGoogle Scholar
  6. 6.
    Mohamed AO, Bauer R, Warkentin A (2013) Application of shallow circumferential grooved wheels to creep-feed grinding. J Mater Process Technol 213:700–706CrossRefGoogle Scholar
  7. 7.
    Oliveira JFG, Bottene AC, França TV (2010) A novel dressing technique for texturing of ground surfaces. CIRP Ann Manuf Technol 59:361–364CrossRefGoogle Scholar
  8. 8.
    Khangar A, Dahotre NB (2005) Morphological modification in laser-dressed alumina grinding wheel material for microscale grinding. J Mater Process Technol 170:1–10CrossRefGoogle Scholar
  9. 9.
    Walter C, Komischke T, Kuster F, Wegener K (2014) Laser-structured grinding tools – generation of prototype patterns and performance evaluation. J Mater Process Technol 214:951–961CrossRefGoogle Scholar
  10. 10.
    Walter C, Komischke T, Weing Rtner E, Wegener K (2014) Structuring of CBN grinding tools by ultrashort pulse laser ablation. Procedia CIRP 14:31–36CrossRefGoogle Scholar
  11. 11.
    Yao P, Wang W, Huang CZ, Wang J, Zhu HT, Zhang ZY (2014) High efficiency abrasive waterjet dressing of diamond grinding wheel. Adv Mater Res 1017:243–248CrossRefGoogle Scholar
  12. 12.
    Shen JY, Xu XP, Lin B, Xu YS (2001) Lap-grinding of Al2O3 ceramics assisted by water-jet dressing metal bond diamond wheel. Key Eng Mater 202-203:171–176CrossRefGoogle Scholar
  13. 13.
    Zhang ZZ, Yao P, Zhang ZY, Xue DL, Wang C, Huang CZ, Zhu HT (2017) A novel technique for dressing metal-bonded diamond grinding wheel with abrasive waterjet and touch truing. Int J Adv Manuf Technol 93:3063–3073CrossRefGoogle Scholar
  14. 14.
    Qi H, Wen D, Yuan Q, Zhang L, Chen Z (2017) Numerical investigation on particle impact erosion in ultrasonic-assisted abrasive slurry jet micro-machining of glasses. Powder Technol 314:627–634CrossRefGoogle Scholar
  15. 15.
    Cai DH, Qi H, Wen DH, Zhang L, Yuan QL, Chen ZZ (2016) Effect of fluid motion on the impact erosion by a micro-particle on quartz crystals. AIP Adv 6:85203–085203-11CrossRefGoogle Scholar
  16. 16.
    Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tools Manuf 122:55–65CrossRefGoogle Scholar
  17. 17.
    Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, Da Silva EGP, Portugal LA, Dos Reis PS, Souza AS, Dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186CrossRefGoogle Scholar
  18. 18.
    Liu D, Huang CZ, Wang J, Zhu HT, Yao P, Liu ZW (2014) Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box–Behnken design. Ceram Int 40:7899–7908CrossRefGoogle Scholar
  19. 19.
    Alberdi A, Rivero A, de Lacalle LNL, Etxeberria I, Suárez A (2010) Effect of process parameter on the kerf geometry in abrasive water jet milling. Int J Adv Manuf Technol 51:467–480CrossRefGoogle Scholar
  20. 20.
    Gunaraj V, Murugan N (1999) Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J Mater Process Technol 88:266–275CrossRefGoogle Scholar
  21. 21.
    Karakurt I, Aydin G, Aydiner K (2014) An investigation on the kerf width in abrasive waterjet cutting of granitic rocks. Arab J Geosci 7:2923–2932CrossRefGoogle Scholar
  22. 22.
    Chung Y, Geskin ES, Singh PJ (1992) Prediction of the geometry of the kerf created in the course of abrasive waterjet machining of ductile materials. In: Springer NetherlandsGoogle Scholar
  23. 23.
    Shanmugam DK, Masood SH (2009) An investigation on kerf characteristics in abrasive waterjet cutting of layered composites. J Mater Process Technol 209:3887–3893CrossRefGoogle Scholar
  24. 24.
    Dadkhahipour K, Nguyen T, Wang J (2012) Mechanisms of channel formation on glasses by abrasive waterjet milling. Wear 292–293:1–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Zhenzhong Zhang
    • 1
  • Peng Yao
    • 1
    Email author
  • Chuanzhen Huang
    • 1
  • Jun Wang
    • 2
  • Donglin Xue
    • 3
  • Weijie Deng
    • 3
  • Zhiyu Zhang
    • 3
  1. 1.Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of EducationShandong UniversityJinanPeople’s Republic of China
  2. 2.School of Mechanical and Manufacturing EngineeringThe University of New South Wales (UNSW)SydneyAustralia
  3. 3.Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunPeople’s Republic of China

Personalised recommendations