Micro machining of bulk metallic glasses: a review

  • Lin Zhang
  • Hu HuangEmail author


Bulk metallic glasses (BMGs) formed by rapid quench from liquid melts are emerging as a novel class of versatile advanced materials with excellent mechanical, physical, and chemical properties over conventional crystalline metals, including superior strength, high elasticity, and excellent corrosion resistance, attributable to their long-range disordered atomic structure. For practical applications, shaping of BMGs is the first process and various processing methods have been proposed. Apart from thermoplastic forming (TPF), micro machining processes, such as diamond turning, laser processing, and micro electrical discharge machining (micro-EDM), belonging to material removal processes, play significant roles for shaping of BMGs in industrial applications. In this review, the state-of-the-art micro machining methods of BMGs are comprehensively summarized, followed by pointing out future developments of this research topic. The reported studies are categorized into three different machining processes, termed as diamond turning, laser processing, and micro-EDM. Due to excellent properties of BMGs as well as amorphous structures, some unique cutting characteristics on the aspects of chip formation, cutting forces, tool wear, oxidization, and crystallization are reported during diamond turning process of BMGs. As the low machining efficiency and severe tool wear impede its broad commercial adoption, laser processing and micro-EDM exert their advantages on micro machining of BMGs. In consideration of the effects of laser irradiation on the multi-component alloys, understanding the fundamental laser-BMG interaction is necessary for the improvement and optimization of the machining precision and accuracy. Micro-EDM, as a novel kind of feasible processing method, further enlarges the machinability of BMGs. Some related issues and challenges in micro-EDM are carefully discussed, which are meaningful for further development of such method in micro/nano machining of BMGs.


Bulk metallic glasses Diamond turning Laser processing Micro electrical discharge machining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank all colleagues and collaborators who have contributed to various aspects of the research reported in this work.

Funding information

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51705197), Young Elite Scientists Sponsorship Program by CAST(YESS) (Grant No. 2017QNRC001), and the Fundamental Research Funds for the Central Universities.


  1. 1.
    Schroers J (2010) Processing of bulk metallic glass. Adv Mater 22(14):1566–1597CrossRefGoogle Scholar
  2. 2.
    Jun WK, Willens RH, Duwez P (1960) Non-crystalline structure in solidified gold–silicon alloys. Nature 187:869Google Scholar
  3. 3.
    Chen HS, Turnbull D (1969) Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metall 17(8):1021–1031CrossRefGoogle Scholar
  4. 4.
    Li N, Chen W, Liu L (2016) Thermoplastic micro-forming of bulk metallic glasses: a review. JOM 68(4):1246–1261CrossRefGoogle Scholar
  5. 5.
    Peker A, Johnson WL (1993) A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl Phys Lett 63(17):2342–2344CrossRefGoogle Scholar
  6. 6.
    Lin XH, Johnson WL (1995) Formation of Ti-Zr-Cu-Ni bulk metallic glasses. J Appl Phys 78(11):6514–6519CrossRefGoogle Scholar
  7. 7.
    Hays CC, Schroers J, Geyer U, Bossuyt S, Stein N, Johnson WL (2000) Glass forming ability in the Zr-Nb-Ni-Cu-Al bulk metallic glasses. J Metastable Nanocrystalline Mater 8:103–108CrossRefGoogle Scholar
  8. 8.
    Inoue A, Zhang T, Masumoto T (1990) Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater Trans JIM 31(3):177–183CrossRefGoogle Scholar
  9. 9.
    Inoue A, Nishiyama N, Amiya K, Zhang T, Masumoto T (1994) Ti-based amorphous alloys with a wide supercooled liquid region. Mater Lett 19(14–15):131–135CrossRefGoogle Scholar
  10. 10.
    Kim YC, Kim WT, Kim DH (2004) A development of Ti-based bulk metallic glass. Mater Sci Eng A 375–377:127–135CrossRefGoogle Scholar
  11. 11.
    Inoue A, Zhang W, Zhang T, Kurosaka K (2001) High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater 49(14):2645–2652CrossRefGoogle Scholar
  12. 12.
    Dai C-L, Guo H, Shen Y, Li Y, Ma E, Xu J (2006) A new centimeter-diameter Cu-based bulk metallic glass. Scr Mater 54(7):1403–1408CrossRefGoogle Scholar
  13. 13.
    Ponnambalam V, Poon SJ, Shiflet GJ (2004) Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J Mater Res 19(5):1320–1323CrossRefGoogle Scholar
  14. 14.
    Lu ZP, Liu CT, Thompson JR, Porter WD (2004) Structural amorphous steels. Phys Rev Lett 92:245503CrossRefGoogle Scholar
  15. 15.
    Ponnambalam V, Poon SJ, Shiflet GJ, Keppens VM, Taylor R, Petculescu G (2003) Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys. Appl Phys Lett 83(6):1131–1133CrossRefGoogle Scholar
  16. 16.
    Ma H, Xu J, Ma E (2003) Mg-based bulk metallic glass composites with plasticity and high strength. Appl Phys Lett 83(14):2793–2795CrossRefGoogle Scholar
  17. 17.
    Inoue A, Kato A, Zhang T, Kim SG, Masumoto T (1991) Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater Trans JIM 32(7):609–616CrossRefGoogle Scholar
  18. 18.
    Inoue A, Ohtera K, Kita K, Masumoto T (1988) New amorphous Mg-Ce-Ni alloys with high strength and good ductility. Jpn J Appl Phys 27:L2248–L2251CrossRefGoogle Scholar
  19. 19.
    Choi-Yim H, Xu D, Johnson WL (2003) Ni-based bulk metallic glass formation in the Ni-Nb-Sn and Ni-Nb-Sn-X (X=B,Fe,Cu) alloy systems. Appl Phys Lett 82(7):1030–1032CrossRefGoogle Scholar
  20. 20.
    Yi S, Park TG, Kim DH (2000) Ni–based bulk amorphous alloys in the Ni-Ti-Zr-(Si, Sn) system. J Mater Res 15(11):2425–2430CrossRefGoogle Scholar
  21. 21.
    Lu I-R, Wilde G, Görler GP, Willnecker R (1999) Thermodynamic properties of Pd-based glass-forming alloys. J Non-Cryst Solids 250–252:577–581CrossRefGoogle Scholar
  22. 22.
    Kui HW (1993) Formation of bulk Pd40Ni40P20 glass. Appl Phys Lett 62(11):1224–1226CrossRefGoogle Scholar
  23. 23.
    Nishiyama N, Inoue A (1996) Glass-forming ability of bulk Pd40Ni10Cu30P20 alloy. Mater Trans JIM 37:1531–1539CrossRefGoogle Scholar
  24. 24.
    Chen M (2011) A brief overview of bulk metallic glasses. NPG Asia Mater 3:82–90CrossRefGoogle Scholar
  25. 25.
    Huang Y, He F, Fan H, Shen J (2012) Ductile Ti-based metallic glass spheres. Scr Mater 67(7–8):661–664CrossRefGoogle Scholar
  26. 26.
    Inoue A, Takeuchi A (2011) Recent development and application products of bulk glassy alloys. Acta Mater 59(6):2243–2267CrossRefGoogle Scholar
  27. 27.
    Williams E, Lavery N (2017) Laser processing of bulk metallic glass: a review. J Mater Process Technol 247:73–91CrossRefGoogle Scholar
  28. 28.
    Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27:47–58CrossRefGoogle Scholar
  29. 29.
    Duan G, Wiest A, Lind ML, Li J, Rhim WK, Johnson WL (2007) Bulk metallic glass with benchmark thermoplastic processability. Adv Mater 19(23):4272–4275CrossRefGoogle Scholar
  30. 30.
    Zhu Z, Zhou X, Liu Q, Lin JQ, Zhao SX (2012) Fabrication of micro-structured surfaces on bulk metallic glasses based on fast tool servo assisted diamond turning. Sci Adv Mater 4(9):906–911CrossRefGoogle Scholar
  31. 31.
    Yu DP, Gan SW, Wong YS, Hong GS, Rahman M, Yao J (2012) Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces. Int J Adv Manuf Technol 63(9–12):1137–1152CrossRefGoogle Scholar
  32. 32.
    Zhang XD, Fang FZ, Wu QQ, Liu XL, Gao HM (2013) Coordinate transformation machining of off-axis aspheric mirrors. Int J Adv Manuf Technol 67(9–12):2217–2224CrossRefGoogle Scholar
  33. 33.
    Tian F, Yin Z, Li S (2016) A novel long range fast tool servo for diamond turning. Int J Adv Manuf Technol 86(5–8):1227–1234CrossRefGoogle Scholar
  34. 34.
    Sosnicki O, Pages A, Pacheco C, Maillard T (2010) Servo piezo tool SPT400MML for the fast and precise machining of free forms. Int J Adv Manuf Technol 47(9–12):903–910CrossRefGoogle Scholar
  35. 35.
    Zhu L, Li Z, Fang F, Huang SY, Zhang XD (2018) Review on fast tool servo machining of optical freeform surfaces. Int J Adv Manuf Technol 95(5–8):2071–2092CrossRefGoogle Scholar
  36. 36.
    Zhu Z, To S (2015) Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics. Opt Express 23(16):20234–20248CrossRefGoogle Scholar
  37. 37.
    Zhu Z, To S, Zhang S (2015) Theoretical and experimental investigation on the novel end-fly-cutting-servo diamond machining of hierarchical micro-nanostructures. Int J Mach Tools Manuf 94:15–25CrossRefGoogle Scholar
  38. 38.
    Zhu Z, To S, Zhang S (2015) Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining. Opt Express 23(16):20593–20604CrossRefGoogle Scholar
  39. 39.
    Guo P, Lu Y, Ehmann KF, Cao J (2014) Generation of hierarchical micro-structures for anisotropic wetting by elliptical vibration cutting. CIRP Ann 63(1):553–556CrossRefGoogle Scholar
  40. 40.
    Bakkal M, Shih AJ, McSpadden SB, Liu CT, Scattergood RO (2005) Light emission, chip morphology, and burr formation in drilling the bulk metallic glass. Int J Mach Tools Manuf 45(7–8):741–752CrossRefGoogle Scholar
  41. 41.
    Bakkal M, Shih AJ, Scattergood RO, Liu CT (2004) Machining of a Zr-Ti-Al-Cu-Ni metallic glass. Scr Mater 50(5):583–588CrossRefGoogle Scholar
  42. 42.
    Bakkal M, Shih AJ, Scattergood RO (2004) Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass. Int J Mach Tools Manuf 44(9):915–925CrossRefGoogle Scholar
  43. 43.
    Han DX, Wang G, Li J, Chan KC, To S, Wu FF, Gao YL, Zhai QJ (2015) Cutting characteristics of Zr-based bulk metallic glass. J Mater Sci Technol 31(2):153–158CrossRefGoogle Scholar
  44. 44.
    Sugioka K, Meunier M, Piqué A (2010) Laser precision microfabrication. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  45. 45.
    Knowles MRH, Rutterford G, Karnakis D, Ferguson A (2007) Micro-machining of metals, ceramics and polymers using nanosecond lasers. Int J Adv Manuf Technol 33(1–2):95–102CrossRefGoogle Scholar
  46. 46.
    Dhara SK, Kuar AS, Mitra S (2008) An artificial neural network approach on parametric optimization of laser micro-machining of die-steel. Int J Adv Manuf Technol 39(1–2):39–46CrossRefGoogle Scholar
  47. 47.
    Mathew MM, Bathe RN, Padmanabham G, Padmanaban R, Thirumalini S (2017) A study on the micromachining of molybdenum using nanosecond and femtosecond lasers. Int J Adv Manuf Technol.
  48. 48.
    Pecholt B, Vendan M, Dong Y, Molian P (2008) Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication. Int J Adv Manuf Technol 39(3–4):239–250CrossRefGoogle Scholar
  49. 49.
    Quintana I, Dobrev T, Aranzabe A, Lalev G, Dimov S (2009) Investigation of amorphous and crystalline Ni alloys response to machining with micro-second and pico-second lasers. Appl Surf Sci 255(13–14):6641–6646CrossRefGoogle Scholar
  50. 50.
    Quintana I, Dobrev T, Aranzabe A, Lalev G (2010) Laser micromachining of metallic glasses: investigation of the material response to machining with micro-second and pico-second lasers. International Society for Optics and Photonics, Bellingham, p 75840YGoogle Scholar
  51. 51.
    Vella PC, Dimov SS, Brousseau E, Whiteside BR (2015) A new process chain for producing bulk metallic glass replication masters with micro- and nano-scale features. Int J Adv Manuf Technol 76(1–4):523–543CrossRefGoogle Scholar
  52. 52.
    Richard J, Demellayer R (2013) Micro-EDM-milling development of new machining technology for micro-machining. Procedia CIRP 6:292–296CrossRefGoogle Scholar
  53. 53.
    Li H, Wang Z, Wang Y, Liu HZ, Bai YF (2017) Micro-EDM drilling of ZrB2-SiC-graphite composite using micro sheet-cylinder tool electrode. Int J Adv Manuf Technol 92(5–8):2033–2041CrossRefGoogle Scholar
  54. 54.
    D’Urso G, Giardini C, Quarto M (2018) Characterization of surfaces obtained by micro-EDM milling on steel and ceramic components. Int J Adv Manuf Technol 97(5–8):2077–2085CrossRefGoogle Scholar
  55. 55.
    Hsieh SF, Chen SL, Lin MH, Ou SF (2013) Crystallization and carbonization of an electrical discharge machined Zr-based bulk metallic glass alloy. J Mater Res 28(22):3177–3184CrossRefGoogle Scholar
  56. 56.
    Axinte E (2012) Metallic glasses from “alchemy” to pure science: present and future of design, processing and applications of glassy metals. Mater Des 35:518–556CrossRefGoogle Scholar
  57. 57.
    Lu ZP, Liu CT (2004) Role of minor alloying additions in formation of bulk metallic glasses: a review. J Mater Sci 39(12):3965–3974CrossRefGoogle Scholar
  58. 58.
    Zhang SJ, To S, Wang SJ, Zhu ZW (2015) A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Manuf 91:76–95CrossRefGoogle Scholar
  59. 59.
    Fujita K, Morishita Y, Nishiyama N, Kimura H, Inoue A (2005) Cutting characteristics of bulk metallic glass. Mater Trans 46(12):2856–2863CrossRefGoogle Scholar
  60. 60.
    Bakkal M, Nakş[idot]ler V (2009) Cutting mechanics of bulk metallic glass materials on meso-end milling. Mater Manuf Process 24(12):1249–1255CrossRefGoogle Scholar
  61. 61.
    Komanduri R, Brown RH (1981) On the mechanics of chip segmentation in machining. J Eng Ind 103(1):33–51CrossRefGoogle Scholar
  62. 62.
    Sheikh-Ahmad J, Bailey JA (1997) Flow instability in the orthogonal machining of CP titanium. J Manuf Sci Eng 119(3):307–313CrossRefGoogle Scholar
  63. 63.
    López de lacalle LN, Pérez J, Llorente JI, Sánchez JA (2000) Advanced cutting conditions for the milling of aeronautical alloys. J Mater Process Technol 100:1–3):1–11CrossRefGoogle Scholar
  64. 64.
    Shivpuri R, Hua J, Mittal P, Srivastava AK, Lahoti GD (2002) Microstructure-mechanics interactions in modeling chip segmentation during titanium machining. CIRP Ann 51(1):71–74CrossRefGoogle Scholar
  65. 65.
    Choudhury IA, El-Baradie MA (1998) Machinability of nickel-base super alloys: a general review. J Mater Process Technol 77(1–3):278–284CrossRefGoogle Scholar
  66. 66.
    Komanduri R, Schroeder TA (1986) On shear instability in machining a nickel-iron base superalloy. J Eng Ind 108:93–100CrossRefGoogle Scholar
  67. 67.
    Jiang MQ, Dai LH (2009) Formation mechanism of lamellar chips during machining of bulk metallic glass. Acta Mater 57(9):2730–2738CrossRefGoogle Scholar
  68. 68.
    Bakkal M, Liu CT, Watkins TR, Scattergood RO, Shih AJ (2004) Oxidation and crystallization of Zr-based bulk metallic glass due to machining. Intermetallics 12(2):195–204CrossRefGoogle Scholar
  69. 69.
    Williams E, Brousseau EB (2016) Nanosecond laser processing of Zr41.2Ti13.8Cu12.5Ni10Be22.5 with single pulses. J Mater Process Technol 232:34–42CrossRefGoogle Scholar
  70. 70.
    Wang HS, Wu JY, Liu YT (2016) Effect of the volume fraction of the ex-situ reinforced Ta additions on the microstructure and properties of laser-welded Zr-based bulk metallic glass composites. Intermetallics 68:87–94CrossRefGoogle Scholar
  71. 71.
    Yamasaki M, Kagao S, Kawamura Y, Yoshimura K (2004) Thermal diffusivity and conductivity of supercooled liquid in Zr41Ti14Cu12Ni10Be23 metallic glass. Appl Phys Lett 84(23):4653–4655CrossRefGoogle Scholar
  72. 72.
    Ma F, Yang J, Zhu XN, Liang CY, Wang HS (2010) Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass. Appl Surf Sci 256(11):3653–3660CrossRefGoogle Scholar
  73. 73.
    Yang J, Zhao Y, Zhang N, Liang YM, Wang MW (2007) Ablation of metallic targets by high-intensity ultrashort laser pulses. Phys Rev B 76(16):165430CrossRefGoogle Scholar
  74. 74.
    Yang Y, Yang J, Liang C, Wang HS, Zhu XN, Kuang DF, Yang Y (2008) Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses. Appl Phys A Mater Sci Process 92(3):635–642CrossRefGoogle Scholar
  75. 75.
    Borowiec A, Haugen HK (2003) Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl Phys Lett 82(25):4462–4464CrossRefGoogle Scholar
  76. 76.
    Wang J, Guo C (2005) Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals. Appl Phys Lett 87(25):251914CrossRefGoogle Scholar
  77. 77.
    Liu Y, Jiang MQ, Yang GW, Guan YJ, Dai LH (2011) Surface rippling on bulk metallic glass under nanosecond pulse laser ablation. Appl Phys Lett 99(19):191902CrossRefGoogle Scholar
  78. 78.
    Ang LK, Lau YY, Gilgenbach RM, Spindler HL, Lash JS, Kovaleski SD (1998) Surface instability of multipulse laser ablation on a metallic target. J Appl Phys 83(8):4466–4471CrossRefGoogle Scholar
  79. 79.
    Fan GJ, Liao HH, Choo H, Liaw PK, Mara N, Sergueeva AV, Mukherjee AK, Lavernia EJ (2007) Fracture of a commercial Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk-metallic glass. Metall Mater Trans A 38(9):2001–2005CrossRefGoogle Scholar
  80. 80.
    Wu B (2008) High-intensity nanosecond-pulsed laser-induced plasma in air, water, and vacuum: a comparative study of the early-stage evolution using a physics-based predictive model. Appl Phys Lett 93(10):101104CrossRefGoogle Scholar
  81. 81.
    Busch R, Bakke E, Johnson WL (1998) Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater 46(13):4725–4732CrossRefGoogle Scholar
  82. 82.
    Liu Y, Jiang MQ, Yang GW, Chen JH, Guan YJ, Dai LH (2012) Saffman–Taylor fingering in nanosecond pulse laser ablating bulk metallic glass in water. Intermetallics 31:325–329CrossRefGoogle Scholar
  83. 83.
    Jiang MQ, Wei YP, Wilde G, Dai LH (2015) Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation. Appl Phys Lett 106(2):021904CrossRefGoogle Scholar
  84. 84.
    Huang H, Jun N, Jiang M, Ryoko M, Yan JW (2016) Nanosecond pulsed laser irradiation induced hierarchical micro/nanostructures on Zr-based metallic glass substrate. Mater Des 109:153–161CrossRefGoogle Scholar
  85. 85.
    Huang H, Noguchi J, Yan J (2016) Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass. Appl Phys A Mater Sci Process 122:881CrossRefGoogle Scholar
  86. 86.
    Huang H, Yan J (2017) Surface patterning of Zr-based metallic glass by laser irradiation induced selective thermoplastic extrusion in nitrogen gas. J Micromech Microeng 27:075007CrossRefGoogle Scholar
  87. 87.
    Yan J, Watanabe K, Aoyama T (2014) Micro-electrical discharge machining of polycrystalline diamond using rotary cupronickel electrode. CIRP Ann 63(1):209–212CrossRefGoogle Scholar
  88. 88.
    Prakash V, Kumar P, Singh PK, Hussain M, Das AK, Chattopadhyaya S (2017) Micro-electrical discharge machining of difficult-to-machine materials: a review. Proc Inst Mech Eng Part B J Eng Manuf.
  89. 89.
    Hourmand M, Sarhan AAD, Sayuti M (2017) Micro-electrode fabrication processes for micro-EDM drilling and milling: a state-of-the-art review. Int J Adv Manuf Technol 91(1–4):1023–1056CrossRefGoogle Scholar
  90. 90.
    Yeo SH, Tan PC, Aligiri E, Tor SB, Loh NH (2009) Processing of zirconium-based bulk metallic glass (BMG) using micro electrical discharge machining (micro-EDM). Mater Manuf Process 24(12):1242–1248CrossRefGoogle Scholar
  91. 91.
    Chen XH, Zhang XC, Zhang Y, Chen GL (2008) Fabrication and characterization of metallic glasses with a specific microstructure for micro-electro-mechanical system applications. J Non-Cryst Solids 354(28):3308–3316CrossRefGoogle Scholar
  92. 92.
    Huang H, Yan J (2015) On the surface characteristics of a Zr-based bulk metallic glass processed by microelectrical discharge machining. Appl Surf Sci 355:1306–1315CrossRefGoogle Scholar
  93. 93.
    Huang H, Yan J (2016) Microstructural changes of Zr-based metallic glass during micro-electrical discharge machining and grinding by a sintered diamond tool. J Alloys Compd 688:14–21CrossRefGoogle Scholar
  94. 94.
    Pan CT, Wu TT, Liu YT, Yamagata Y, Huang JC (2009) Fabrication of aspheric surface using ultraprecision cutting and BMG molding. J Mater Process Technol 209(11):5014–5023CrossRefGoogle Scholar
  95. 95.
    Li HF, Zheng YF (2016) Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater 36:1–20CrossRefGoogle Scholar
  96. 96.
    Aliyu AAA, Abdul-Rani AM, Ginta TL, Prakash C, Axinte E, Fua-Nizan R (2017) Investigation of nanoporosities fabricated on metallic glass surface by hydroxyapatite mixed EDM for orthopedic application. Malays J Fundam Appl Sci 13:523–528CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical Science and EngineeringJilin UniversityChangchunChina
  2. 2.Department of Integrated Systems EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations