Advertisement

Effect of ultrasonic vibration on welding load, macrostructure, and mechanical properties of Al/Mg alloy joints fabricated by friction stir lap welding

  • S. Kumar
  • C. S. WuEmail author
  • S. Zhen
  • W. Ding
ORIGINAL ARTICLE
  • 67 Downloads

Abstract

An initial study is proposed in order to evaluate the outcomes of ultrasonic vibration in friction stir welding of Al and Mg alloys for lap configuration. A novel ultrasonic assembly is designed and developed such that ultrasonic vibrations could be enforced along the welding direction into the weldment via the welding tool. Various sets of welding parameters are picked out for experimentation and thereafter optimum are evaluated. With ultrasonic assistance during pin and shoulder plunging, a substantial diminution in welding load, up to 30 and 19.75% are obtained while the noteworthy reduction in tool torque and input power is also perceived at optimum parameters. Additionally, lap shear tests result into an improvement of 37.88 and 39.24%, respectively, in context to failure load and weldment elongation. Macrostructure analysis portrays elimination of defects, enhanced material mixing, and broadening of the stirred zone with acoustic assistance.

Keywords

Friction stir lap welding Ultrasonic vibration Macrostructure Mechanical properties Aluminum alloy Magnesium alloy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the financial support from the Key R&D Program of Shandong Province in China (Grant No. 2018GGX103001).

References

  1. 1.
    Kumar S, Wu CS (2017) Review: Mg and its alloy—scope, future perspectives and recent advancements in welding and processing. J Harbin Inst Technol (New Ed) 24:1–37Google Scholar
  2. 2.
    Afghani SSS, Jafarian M, Paidar M, Jafarian M (2016) Diffusion bonding of Al 7075 and Mg AZ31 alloys: process parameters, microstructural analysis and mechanical properties. Trans Nonferrous Met Soc China 26:1843–1851CrossRefGoogle Scholar
  3. 3.
    Atabay SE, Esen Z, Dericioglu AF (2017) Effect of Sn alloying on the diffusion bonding behavior of Al-Mg-Si alloys. Metall Mater Trans A 48:3181–3187CrossRefGoogle Scholar
  4. 4.
    Gao Q, Meco S, Wang K, Guo S (2017) Light-weight Mg/Al dissimilar structures welded by CW laser for weight saving applications. In: Advanced computational methods in life system modeling and simulation. Springer, Singapore, pp 349–357CrossRefGoogle Scholar
  5. 5.
    Islam MR, Ishak M, Shah LH, Idris SRA, Meriç C (2017) Dissimilar welding of A7075-T651 and AZ31B alloys by gas metal arc plug welding method. Int J Adv Manuf Technol 88:2773–2783CrossRefGoogle Scholar
  6. 6.
    Singh K, Singh G, Singh H (2018) Review on friction stir welding of magnesium alloys. J Magnes AlloyGoogle Scholar
  7. 7.
    Zhen S, Wu CS, Kumar S (2018) Determination of heat generation by correlating the interfacial friction stress with temperature in friction stir welding. J Manuf Process 31:801–811CrossRefGoogle Scholar
  8. 8.
    Anil Kumar KS, Murigendrappa SM, Kumar H (2017) A bottom-up optimization approach for friction stir welding parameters of dissimilar AA2024-T351 and AA7075-T651 alloys. J Mater Eng Perform 26:3347–3367CrossRefGoogle Scholar
  9. 9.
    Liu X, Sun Y, Morisada Y, Fujii H (2018) Dynamics of rotational flow in friction stir welding of aluminium alloys. J Mater Process Technol 252:643–651CrossRefGoogle Scholar
  10. 10.
    Regev M, Rashkovsky T, Cabibbo M, Spigarelli S (2018) Microstructure stability during creep of friction stir welded AA2024-T3 alloy. J Mater Eng Perform:1–10Google Scholar
  11. 11.
    Shanavas S, Edwin Raja Dhas J, Murugan N (2018) Weldability of marine grade AA 5052 aluminum alloy by underwater friction stir welding. Int J Adv Manuf Technol 95:4535–4546CrossRefGoogle Scholar
  12. 12.
    Imam M, Racherla V, Biswas K, Fujii H, Chintapenta V, Sun Y, Morisada Y (2017) Microstructure-property relation and evolution in friction stir welding of naturally aged 6063 aluminium alloy. Int J Adv Manuf Technol 91:1753–1769CrossRefGoogle Scholar
  13. 13.
    Liu F, Fu L, Chen H (2018) High speed friction stir welding of ultra-thin AA6061-T6 sheets using different backing plates. J Manuf Process 33:219–227CrossRefGoogle Scholar
  14. 14.
    Patel VV, Badheka VJ, Patel U, Patel S, Patel S, Zala S, Badheka K (2017) Experimental investigation on hybrid friction stir processing using compressed air in aluminum 7075 alloy. Mater Today Proc 4:10025–10029CrossRefGoogle Scholar
  15. 15.
    Lv X, Wu CS, Yang CL, Padhy GK (2018) Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy. J Mater Process Technol 254:145–157CrossRefGoogle Scholar
  16. 16.
    Firouzdor V, Kou S (2009) Al-to-Mg friction stir welding: effect of positions of Al and Mg with respect to the welding tool. Weld J 88:213–224Google Scholar
  17. 17.
    Chowdhury SH, Chen DL, Bhole SD, Cao X, Wanjara P (2013) Lap shear strength and fatigue behavior of friction stir spot welded dissimilar magnesium-to-aluminum joints with adhesive. Mater Sci Eng A 562:53–60CrossRefGoogle Scholar
  18. 18.
    Mohammadi J, Behnamian Y, Mostafaei A, Izadi H, Saeid T, Kokabi AH, Gerlich AP (2015) Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: microstructure studies and mechanical characterizations. Mater Charact 101:189–207CrossRefGoogle Scholar
  19. 19.
    Dorbane A, Mansoor B, Ayoub G, Shunmugasamy VC, Imad A (2016) Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061. Mater Sci Eng A 651:720–733CrossRefGoogle Scholar
  20. 20.
    Verma J, Taiwade RV, Sapate SG, Patil AP, Dhoble AS (2017) Evaluation of microstructure, mechanical properties and corrosion resistance of friction stir-welded aluminum and magnesium dissimilar alloys. J Mater Eng Perform 26:4738–4747CrossRefGoogle Scholar
  21. 21.
    Sato YS, Park SHC, Michiuchi M, Kokawa H (2004) Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scr Mater 50:1233–1236CrossRefGoogle Scholar
  22. 22.
    Chen YC, Nakata K (2008) Friction stir lap joining aluminum and magnesium alloys. Scr Mater 58:433–436CrossRefGoogle Scholar
  23. 23.
    Lv XQ, Wu CS, Padhy GK (2017) Diminishing intermetallic compound layer in ultrasonic vibration enhanced friction stir welding of aluminum alloy to magnesium alloy. Mater Lett 203:81–84CrossRefGoogle Scholar
  24. 24.
    Yamamoto N, Liao J, Watanabe S, Nakata K (2009) Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg alloy and Al alloy. Mater Trans 50:2833–2838CrossRefGoogle Scholar
  25. 25.
    Mohammadi J, Behnamian Y, Mostafaei A, Gerlich AP (2015) Tool geometry, rotation and travel speeds effects on the properties of dissimilar magnesium/aluminum friction stir welded lap joints. Mater Des 75:95–112CrossRefGoogle Scholar
  26. 26.
    Rao HM, Yuan W, Badarinarayan H (2015) Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys. Mater Des 66:235–245CrossRefGoogle Scholar
  27. 27.
    Tan S, Zheng F, Chen J, Han J, Wu Y, Peng L (2017) Effects of process parameters on microstructure and mechanical properties of friction stir lap linear welded 6061 aluminum alloy to NZ30K magnesium alloy. J Magnes Alloy 5:56–63CrossRefGoogle Scholar
  28. 28.
    Firouzdor V, Kou S (2010) Formation of liquid and intermetallics in Al-to-Mg friction stir welding. Metall Mater Trans A 41:3238–3251CrossRefGoogle Scholar
  29. 29.
    Liu Z, Ji S, Meng X (2018) Improving joint formation and tensile properties of dissimilar friction stir welding of aluminum and magnesium alloys by solving the pin adhesion problem. J Mater Eng Perform 27:1404–1413CrossRefGoogle Scholar
  30. 30.
    Shah LH, Gerlich A, Zhou Y (2017) Design guideline for intermetallic compound mitigation in Al-Mg dissimilar welding through addition of interlayer. Int J Adv Manuf Technol 1–12Google Scholar
  31. 31.
    Macwan A, Kumar A, Chen DL (2017) Ultrasonic spot welded 6111-T4 aluminum alloy to galvanized high-strength low-alloy steel: microstructure and mechanical properties. Mater Des 113:284–296CrossRefGoogle Scholar
  32. 32.
    Peng H, Jiang XQ, Bai XF, Li D, Chen D (2018) Microstructure and mechanical properties of ultrasonic spot welded Mg/Al alloy dissimilar joints. Metals (Basel) 8:229CrossRefGoogle Scholar
  33. 33.
    Kumar S, Wu CS, Padhy GK (2017) Ultrasonic vibrations in friction stir welding: state of the art. In: 7th International Conference on Welding Science and Engineering (WSE 2017) in conjunction with 3rd International Symposium on Computer-Aided Welding Engineering (CAWE 2017). Shandong University, Jinan, China, pp 272–276Google Scholar
  34. 34.
    Kumar S, Wu CS, Padhy GK, Ding W (2017) Application of ultrasonic vibrations in welding and metal processing: a status review. J Manuf Process 26:295–322CrossRefGoogle Scholar
  35. 35.
    Liu XC, Wu CS (2015) Material flow in ultrasonic vibration enhanced friction stir welding. J Mater Process Technol 225:32–44CrossRefGoogle Scholar
  36. 36.
    Shi L, Wu CS, Liu XC (2015) Modeling the effects of ultrasonic vibration on friction stir welding. J Mater Process Technol 222:91–102CrossRefGoogle Scholar
  37. 37.
    Kumar S (2016) Ultrasonic assisted friction stir processing of 6063 aluminum alloy. Arch Civ Mech Eng 16:473–484CrossRefGoogle Scholar
  38. 38.
    Liu XC, Wu CS (2016) Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding. Mater Des 90:350–358CrossRefGoogle Scholar
  39. 39.
    Liu XC, Wu CS (2014) Effect of ultrasonic vibration on microstructure and mechanical properties of friction stir welded joint of 6061-T4 aluminum alloy. Trans China Weld 35:49–53Google Scholar
  40. 40.
    Meng X, Xu Z, Huang Y, et al (2017) Interface characteristic and tensile property of friction stir lap welding of dissimilar aircraft 2060-T8 and 2099-T83 Al–Li alloys. Int J Adv Manuf Technol 1–9Google Scholar
  41. 41.
    Ji S, Meng X, Liu Z, Huang R, Li Z (2017) Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic. Mater Lett 201:173–176CrossRefGoogle Scholar
  42. 42.
    Benfer S, Straß B, Wagner G, Fürbeth W (2016) Manufacturing and corrosion properties of ultrasound supported friction stir welded Al/Mg-hybrid joints. Surf Interface Anal 48:843–852CrossRefGoogle Scholar
  43. 43.
    Kumar S, Wu CS (2018) A novel technique to join Al and Mg alloys: ultrasonic vibration assisted linear friction stir welding Mater Today Proc 05Google Scholar
  44. 44.
    Strass B, Wagner G, Conrad C et al (2014) Realization of Al/Mg-hybrid-joints by ultrasound supported friction stir welding—mechanical properties, microstructure and corrosion behavior. Adv Mater Res 966–967:521–535CrossRefGoogle Scholar
  45. 45.
    Shi L, Wu CS, Liu XC (2015) Modelling the effects of ultrasonic vibrations in friction stir welding. J Mater Process Technol 222:91–102CrossRefGoogle Scholar
  46. 46.
    Park K, Kim B, Ni J (2008) Numerical simulation of plunge force during the plunge phase of friction stir welding and ultrasonic assisted FSW. ASME 2008 International Mechanical Engineering Congress and ExpositionGoogle Scholar
  47. 47.
    Kumar S, Ding W, Zhen S, Wu CS (2018) Analysis of the dynamic performance of a complex ultrasonic horn for application in friction stir welding. Int J Adv Manuf Technol 97:1269–1284CrossRefGoogle Scholar
  48. 48.
    Zhong YB, Wu CS, Padhy GK (2017) Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding. J Mater Process Technol 239:279–283CrossRefGoogle Scholar
  49. 49.
    Ammouri AH, Kridli G, Ayoub G, Hamade RF (2015) Relating grain size to the Zener-Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing. J Mater Process Technol 222:301–306CrossRefGoogle Scholar
  50. 50.
    Commin L, Dumont M, Masse JE, Barrallier L (2009) Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta Mater 57:326–334CrossRefGoogle Scholar
  51. 51.
    Albakri AN, Mansoor B, Nassar H, Khraisheh MK (2013) Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy—a numerical and experimental investigation. J Mater Process Technol 213:279–290CrossRefGoogle Scholar
  52. 52.
    Saju TP, Ganesh Narayanan R (2018) Friction stir forming of dissimilar grade aluminum alloys: influence of tool rotational speed on the joint evolution, mechanical performance, and failure modes. Int J Adv Manuf Technol 95:1377–1397CrossRefGoogle Scholar
  53. 53.
    Firouzdor V, Kou S (2010) Al-to-Mg friction stir welding: effect of material position, travel speed, and rotation speed. Metall Mater Trans A 41:2914–2935CrossRefGoogle Scholar
  54. 54.
    Ahmadnia M, Seidanloo A, Teimouri R, Rostamiyan Y, Titrashi KG (2015) Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of AA6061 joints. Int J Adv Manuf Technol 78:2009–2024CrossRefGoogle Scholar
  55. 55.
    Shi L, Wu CS, Padhy GK, Gao S (2016) Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding. Mater Des 104:102–115CrossRefGoogle Scholar
  56. 56.
    Gerlich A, Su P, Yamamoto M, North TH (2008) Material flow and intermixing during dissimilar friction stir welding. Sci Technol Weld Join 13:254–264CrossRefGoogle Scholar
  57. 57.
    Ji S, Li Z, Zhang L, Zhou Z, Chai P (2016) Effect of lap configuration on magnesium to aluminum friction stir lap welding assisted by external stationary shoulder. Mater Des 103:160–170CrossRefGoogle Scholar
  58. 58.
    Rajesh S, Badheka VJ (2018) Process parameters/material location affecting hooking in friction stir lap welding: dissimilar aluminum alloys. Mater Manuf Process 33:323–332CrossRefGoogle Scholar
  59. 59.
    Kim YG, Fujii H, Tsumura T, Komazaki T, Nakata K (2006) Three defect types in friction stir welding of aluminum die casting alloy. Mater Sci Eng A 415:250–254CrossRefGoogle Scholar
  60. 60.
    Zhao Y, Huang L, Zhao Z, Yan K (2016) Effect of travel speed on the microstructure of Al-to-Mg FSW joints. Mater Sci Technol 32:1025–1034CrossRefGoogle Scholar
  61. 61.
    Zhao Y, Zhou L, Wang Q, Yan K, Zou J (2014) Defects and tensile properties of 6013 aluminum alloy T-joints by friction stir welding. Mater Des 57:146–155CrossRefGoogle Scholar
  62. 62.
    Chen H, Fu L, Liang P, Liu F (2017) Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets. Mater Charact 125:160–173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.MOE Key Lab for Liquid-Solid Structure Evolution and Materials Processing, Institute of Materials JoiningShandong UniversityJinanChina

Personalised recommendations