Advertisement

Optimization of mechanical properties of printed acrylonitrile butadiene styrene using RSM design

  • Sana AbidEmail author
  • Rihab Messadi
  • Tarek Hassine
  • Hachmi Ben Daly
  • Jérémie Soulestin
  • Marie France Lacrampe
ORIGINAL ARTICLE
  • 35 Downloads

Abstract

The aim of this study is to evaluate the effect of printing parameters and their interactions on the mechanical properties of ABS-based specimen, 3D printed by fused deposition modeling (FDM), using the response surface method. The manufacturing direction (X, Y, or Z) and the deposition angle (0°, 30°, or 45°) are analyzed as input factors. The Young modulus, the yield stress, the tensile strength, and the deformation at fracture in tension are considered as responses. An empirical model for each response is built in terms of factors and their interactions. The predicted results are in good coherence with experimental ones. The original contribution of this paper consists in the evaluation of the optimal combination of manufacturing parameters thanks to the MINITAB software.

Keywords

Fused deposition modeling (FDM) Response surface method (RSM) Mechanical properties Acrylonitrile butadiene styrene (ABS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang J, Xie H, Weng Z, Senthil T, Wu L (2016) A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling. Mater Des 105:152–159CrossRefGoogle Scholar
  2. 2.
    Waterman NA, Dickens P (1994) Rapid product development in the USA, Europe and Japan. World Cl Des Manuf 1(3):27–36CrossRefGoogle Scholar
  3. 3.
    Bernard A, Fischer A (2002) New trends in rapid product development. CIRP Ann Manuf Technol 51(2):635–652CrossRefGoogle Scholar
  4. 4.
    Bourell DL (2006) Materials issues in rapid manufacturing. Rapid manufacturing: an industrial revolution for the digital ageGoogle Scholar
  5. 5.
    Ahn S-H, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8(4):248–257CrossRefGoogle Scholar
  6. 6.
    Montero M, Roundy S, Odell D (2001) Material characterization of fused deposition modeling (FDM) ABS by designed experiments. Proc Rapid Prototyp Manuf Conf, no March 2018, p 1–21Google Scholar
  7. 7.
    Mohamed OA, Masood SH, Bhowmik JL, Nikzad M, Azadmanjiri J (2016) Effect of process parameters on dynamic mechanical performance of FDM PC/ABS printed parts through design of experiment. J Mater Eng Perform 25(7):2922–2935CrossRefGoogle Scholar
  8. 8.
    Shojib Hossain M, Espalin D, Ramos J, Perez M, Wicker R (2014) Improved mechanical properties of fused deposition modeling-manufactured parts through build parameter modifications. J Manuf Sci Eng 136(6):61002CrossRefGoogle Scholar
  9. 9.
    Croccolo D, De Agostinis M, Olmi G (2013) Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Comput Mater Sci 79:506–518CrossRefGoogle Scholar
  10. 10.
    Srivastava M, Maheshwari S, Kundra TK, Rathee S (2016) An integrated RSM-GA based approach for multi response optimization of FDM process parameters for pyramidal ABS primitives. J Manuf Sci Prod 16(3):15–18Google Scholar
  11. 11.
    A. NF EN ISO 527-2 (1996) Plastics: determination of tensile properties, part 2: test conditions for moulding and extrusion plasticsGoogle Scholar
  12. 12.
    C. Ziemian, M. Sharma, and S. Ziemi (2012) Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling. Mech EngGoogle Scholar
  13. 13.
    A. NF EN ISO 527-1 (1996) Plastics—determination of tensile properties—part 1: general principlesGoogle Scholar
  14. 14.
    Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B 13(1):1–45MathSciNetzbMATHGoogle Scholar
  15. 15.
    Griffiths CA, Howarth J, De Almeida-rowbotham G., Rees A (2016) A design of experiments approach to optimise tensile and notched bending properties of fused deposition modelling partsGoogle Scholar
  16. 16.
    Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of fused deposition modelling process using the grey Taguchi method. Proc Inst Mech Eng Part B J Eng Manuf 224(1):135–145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Sana Abid
    • 1
    • 2
    • 3
    Email author
  • Rihab Messadi
    • 1
    • 2
    • 3
  • Tarek Hassine
    • 3
  • Hachmi Ben Daly
    • 3
  • Jérémie Soulestin
    • 1
    • 2
  • Marie France Lacrampe
    • 1
    • 2
  1. 1.IMT Lille Douai, Polymers and Composites Technology & Mechanical Engineering DepartmentIMT Lille DouaiDouaiFrance
  2. 2.University of LilleLilleFrance
  3. 3.National Engineering School of Sousse, Mechanical Laboratory of Sousse LMS, Pôle technologique de Sousse, Route de Ceinture Sahloul 4054University of SousseSousseTunisia

Personalised recommendations