Experimental and numerical study of DC04 sheet metal behaviour—plastic anisotropy identification and application to deep drawing

  • Walid GhennaiEmail author
  • Ouzine Boussaid
  • Hocine Bendjama
  • Badis Haddag
  • Mohammed Nouari


This paper deals with the identification and modelling of the deformation behaviour of DC04 sheet metal. An application of the identified behaviour model in the framework of finite element (FE) simulation of deep drawing is performed. Uniaxial tensile tests in three directions are performed to reveal the in-plane plastic anisotropy of the DC04 sheet. The Hill48 quadratic criterion is introduced to represent the initial plastic anisotropy, while the work hardening is represented by power and exponential type laws. Parameters of the established behaviour model are identified using two methods based on Hill48 criterion. FE simulations of uniaxial tensile tests are carried out to validate the identified parameters and thus retain the identification method giving best fitting of performed tests. The identified plastic behaviour model, including initial plastic anisotropy and hardening, is then introduced in FE simulation of deep drawing of waterproof case for a truck, in which the effect of blank-holder force on the drawpiece quality is analysed in order to determine the optimum thickness. Then, the effect of combination between plastic anisotropy and friction anisotropy on the sheet thickness distribution is investigated. The performed analysis shows that the plastic and friction anisotropies have an effect on the DC04 sheet metal deformation.


DC04 sheet Plastic anisotropy Identification Friction anisotropy Tensile tests Deep drawing FE modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the Rouiba SNVI Company of industrial vehicles in Algiers (Algeria) that gave us the vehicle body work material for this study. Thanks for the laboratory LEM3 at InSIC in Saint-Dié-des-Vosges (France) for the acceptance and contribution to perform numerical simulations.


  1. 1.
    Daxin E, Mizuno T, Li Z (2008) Stress analysis of rectangular cup drawing. J Mater Process Technol 205:469–476CrossRefGoogle Scholar
  2. 2.
    Saxena RK, Dixit PM (2009) Finite element simulation of earing defect in deep drawing. Int J Adv Manuf Technol 45:219–233CrossRefGoogle Scholar
  3. 3.
    Brunet M, Morestin F, Walter-Leberre H (2005) Failure analysis of anisotropic sheet-metals using non-local plastic damage model. J Mater Process Technol 170:457–470CrossRefGoogle Scholar
  4. 4.
    Khelifa M, Oudjene M (2008) Numerical damage prediction in deep- drawing of sheet metals. J Mater Process Technol 200:71–76CrossRefGoogle Scholar
  5. 5.
    Elbitar T, Gemeal A (2008) Finite element analysis of deep drawing and hole flanging processing of an oil filter cover. Int J Mater Form 1(Suppl 1):125–128CrossRefGoogle Scholar
  6. 6.
    Altan T, Oh SI, Gegel HL (1983) Metal forming: fundamentals and applications, American Society for Metals, Metals ParkGoogle Scholar
  7. 7.
    Wen T, Daxin E (2004) Application of FEM on the study of material flowing deformation rule in the process of rectangular case drawing. Mod Manuf Eng 4:40–42Google Scholar
  8. 8.
    Daxin E, Yuping P, Takaji M (2004) Analysis of flange corner deformation in the process of fine copper cup drawing sheet rectangular. J Plasticity Eng 11:39–42Google Scholar
  9. 9.
    Özek C, Bal M (2009) The effect of die/blank holder and punch radiuses on limit drawing ratio in angular deep-drawing dies. J Plast Eng 40:1077–1083Google Scholar
  10. 10.
    Kardan M, Parvizi A, Askari A (2018) Influence of process parameters on residual stresses in deep-drawing process with FEM and experimental evaluations. J Braz Soc Mech Sci Eng 40:157CrossRefGoogle Scholar
  11. 11.
    Wei Z, Zhang ZL, Dong XH (2006) Deep drawing of rectangle parts using variable blank holder force. Int J Adv Manuf Technol 29:885–889CrossRefGoogle Scholar
  12. 12.
    Mostafapur A, Ahangar S, Dadkhah R (2013) Numerical and experimental investigation of pulsating blankholder effect on drawing of cylindrical part of aluminum alloy in deep drawing process. Int J Adv Manuf Technol 69:1113–1121CrossRefGoogle Scholar
  13. 13.
    Rodrigues DM, Leitão C, Menezes LF (2010) A multi-step analysis for determining admissible blank-holder forces in deep-drawing operations. Mater Des 31:1475–1481CrossRefGoogle Scholar
  14. 14.
    Padmanabhan R, Oliveira MC, Alves JL, Menezes LF (2007) Influence of process parameters on the deep drawing of stainless steel. Finite Elem Anal Des 43:1062–1067CrossRefGoogle Scholar
  15. 15.
    Hol J, Meinders VT, Geijselaers HJM, van den Boogaard AH (2015) Multi-scale friction modeling for sheet metal forming: the mixed lubrication regime. Tribol Int 85:10–25CrossRefGoogle Scholar
  16. 16.
    Challen JM, Oxley PLB (1979) An explanation of the different regimes of friction and wear using asperity deformation models. Wear 53:229–243CrossRefGoogle Scholar
  17. 17.
    Westeneng JD (2001) Modelling of contact and friction in deep drawing processes. PhD Thesis, University of TwenteGoogle Scholar
  18. 18.
    Trzepieciński T, Gelgele HL (2011) Investigation of anisotropy problems in sheet metal forming using finite element method. Int J Mater Form 4:357–369CrossRefGoogle Scholar
  19. 19.
    Trzepieciński T, Bochnowski W, Witek L (2018) Variation of surface roughness, micro-hardness and friction behaviour during sheet-metal forming. Int J Surf Sci Eng 12(2):119–136CrossRefGoogle Scholar
  20. 20.
    Luo L, Jiang Z, Wei D (2017) Influences of micro-friction on surface finish in micro deep drawing of SUS304 cups. Wear 374-375:36–45CrossRefGoogle Scholar
  21. 21.
    Singh CP, Agnihotri G (2017) Formability analysis at different friction conditions in axis-symmetric deep drawing process. Mater Today-Proc 4:2411–2418Google Scholar
  22. 22.
    Xunzhong G, Liuan W, Juan L, Fuye M, Jie T, Yong X, Kai J, Huiting W (2017) Simulation and experimental studies on hydrodynamic deep drawing of 2198 aluminum lithium alloy. Rare Metal Mater Eng 46(7):1821–1826CrossRefGoogle Scholar
  23. 23.
    Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond 193:281–297MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Von-Mises R (1913) Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913:582–592zbMATHGoogle Scholar
  25. 25.
    Safaei M, Lee MG, Zang SL, De Waele W (2014) An evolutionary anisotropic model for sheet metals based on non-associated flow rule approach. Comput Mater Sci 81:15–29CrossRefGoogle Scholar
  26. 26.
    Cardoso RPR, Adetoro OB (2017) A generalisation of the Hill’s quadratic yield function for planar plastic anisotropy to consider loading direction. Int J Mech Sci 128-129:253–268CrossRefGoogle Scholar
  27. 27.
    Lemaître J, Chaboche JL (1985) Mécanique des matériaux solides. Dunod, ParisGoogle Scholar
  28. 28.
    Hill R (1990) Constitutive modelling of orthotropic plasticity in sheet metals. J Mech Phys Solids 38:405–417Google Scholar
  29. 29.
    Barlat F, Lian J (1989) Plastic behaviour and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plast 5:51–66CrossRefGoogle Scholar
  30. 30.
    Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. Int J Plast 7:693–712CrossRefGoogle Scholar
  31. 31.
    Barlat F, Maeda Y, Chung K, Yanagawa M (1997) Yield function development for aluminum alloy sheets. J Mech Phys Solids 45(11/12):1727–1763Google Scholar
  32. 32.
    Flores P, Duchene L, Bouffioux C, Lelotte T, Henrard C, Pernin N, Van Bael A, He S, Duflou J, Habraken AM (2007) Model identification and FE simulations: effect of different yield loci and hardening laws in sheet forming. Int J Plast 23:420–449CrossRefzbMATHGoogle Scholar
  33. 33.
    Zienkiewicz OC, Taylor RL (2000) Finite element method: solid mechanics. Butterworth-Heinemann, OxfordzbMATHGoogle Scholar
  34. 34.
    Önder E, Tekkaya AE (2008) Numerical simulation of various cross sectional workpieces using conventional deep drawing and hydroforming technologies. Int J Mach Tool Manu 48:532–542CrossRefGoogle Scholar
  35. 35.
    Haddag B, Balan T, Abed-Meraim F (2007) Investigation of advanced strain-path dependent material models for sheet metal forming simulations. Int J Plast 23:951–979CrossRefzbMATHGoogle Scholar
  36. 36.
    Haddag B, Abed-Meraim F, Balan T (2009) Strain localization analysis using a large deformation anisotropic elastic–plastic model coupled with damage. Int J Plast 25:1970–1996CrossRefGoogle Scholar
  37. 37.
    Souto N, Andrade-Campos A, Thuillier S (2015) Material parameter identification within an integrated methodology considering anisotropy, hardening and rupture. J Mater Process Technol 220:157–172CrossRefGoogle Scholar
  38. 38.
    Gronostajski Z (2000) The constitutive equations for FEM analysis. J Mater Process Technol 106:40–44CrossRefGoogle Scholar
  39. 39.
    Lankford WT, Snyder SC, Bauscher JA (1950) New criteria for predicting the press performance of deep drawing sheets. T Am Soc Metal 42:1197–1232Google Scholar
  40. 40.
    Kim YS, Jain MK, Metzger DR (2012) Determination of pressure-dependent friction coefficient from draw-bend test and its application to cup drawing. Int J Mach Tool Manu 56:69–78CrossRefGoogle Scholar
  41. 41.
    Serri J, Martiny M, Ferron G (2005) A numerical analysis of the formability of unstable austenitic steels. J Mater Process Technol 165:1241–1247CrossRefzbMATHGoogle Scholar
  42. 42.
    Masarczyk PP, Struppek T (2003) Process for the determination of the friction properties of sheet metal during forming and the measuring apparatus for carrying out the process. United States Patent, No 6,591,659Google Scholar
  43. 43.
    Stachowicz F, Trzepieciński T (2003) Opory tarcia podczas kształtowania blach karoseryjnych. XIV Konferencja Międzynarodowa SAKON, Przecław pp 297–302Google Scholar
  44. 44.
    Li Y, Luo M, Gerlach J, Wierzbicki T (2010) Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol 210:1858–1869CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Walid Ghennai
    • 1
    Email author
  • Ouzine Boussaid
    • 2
  • Hocine Bendjama
    • 3
  • Badis Haddag
    • 4
  • Mohammed Nouari
    • 4
  1. 1.Laboratoire de Mécanique Industrielle LMI, Department of Mechanical EngineeringBadji Mokhtar-Annaba UniversityAnnabaAlgeria
  2. 2.Laboratoire de Recherche en Risque Industriels Contrôle et Sureté L2RCS, Department of Mechanical EngineeringBadji Mokhtar-Annaba UniversityAnnabaAlgeria
  3. 3.Research Center in Industrial Technologies CRTIAlgiersAlgeria
  4. 4.Laboratoire d’Etude des Microstructures et de Mécanique des MatériauxLEM3 UMR CNRS 7239, Institut Mines-Telecom, GIP-InSICUniversity of LorraineSaint-Dié-des-VosgesFrance

Personalised recommendations