Advertisement

Simplified two-dimensional model for the prediction of pressures and velocities in hot strip rolling

  • Mohamed ZaafEmail author
  • Abdelmalek Mebarek
  • Abdelaaziz Amirat
ORIGINAL ARTICLE
  • 40 Downloads

Abstract

The present paper introduces a simplified two-dimensional model for the prediction of pressures and velocities in hot strip rolling process through the combination of squeezing and shearing models. First, the squeezing model based on Karman equation is used to obtain a predictive model of stresses and velocities on the roll-strip contact along the longitudinal direction referred as ROL1D. Secondly, the shearing model based on thin film assumption is developed to predict pressures in the longitudinal direction while shearing stresses and velocities along normal and longitudinal directions referred as ROLXZ. Then, the two former models have been combined in order to obtain a squeeze-shear model referred as ROL2D. The latter model permits to assess the rolling process with respect to squeezing and shearing. Results show that where squeezing is most dominant, the ROL2D model is conforming the reality of the rolling process and in good agreement with experimental and literature data.

Keywords

Hot rolling Squeezing Shearing Thin films Newtonian viscous 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This work received financial support from the Algerian general direction of research (DGRSDT): Direction général de la recherche scientifique et technologique.

References

  1. 1.
    Wang J, Liu X, Guo W (2018) Analysis of mechanical parameters for asymmetrical strip rolling by slab method. Int J Adv Manuf Technol.  https://doi.org/10.1007/s00170-018-2368
  2. 2.
    Montmitonnet P, Fourment L, Ripert U, Ngo QT, Alain Ehrlacher A (2016) State of the art in rolling process modelling. BHM Springer-Verlag Wien 161(9):396–404.  https://doi.org/10.1007/s00501-016-0520-4
  3. 3.
    Weisz-Patrault D, Maurin L, Legrand N, Ben Salem A, Ait Bengrir A (2015) Experimental evaluation of contact stress during cold rolling process with optical fiber Bragg gratings sensors measurements and fast inverse method. J Mater Process Technol 223:105–123.  https://doi.org/10.1016/j.jmatprotec.2015.03.047 CrossRefGoogle Scholar
  4. 4.
    Lenard JG, Malinowski Z (1993) Measurement of friction during the warm rolling of aluminum. J Mater Process Technol 39:357–371.  https://doi.org/10.1016/0924-0136(93)90169-7 CrossRefGoogle Scholar
  5. 5.
    Hum B, Colquhoun HW, Lenard JG (1996) Measurement of friction during hot rolling of aluminum strip. J Mater Process Technol 60:331–338.  https://doi.org/10.1016/0924-0136(96)02350-3 CrossRefGoogle Scholar
  6. 6.
    Bogatov AA, Nukhov DS, P’yankov KP (2015) Finite-element modelling of plate-rolling. Metallurgist 59(1–2):113–118.  https://doi.org/10.1007/s11015-015-0069-6um CrossRefGoogle Scholar
  7. 7.
    Chandra S, Dixit US (2004) A rigid-plastic finite element analyses of temper rolling process. J Mater Process Technol 152:9–16.  https://doi.org/10.1016/j.jmatprotec.2003.11.003 CrossRefGoogle Scholar
  8. 8.
    Le HR, Sutcliffe MPF (2004) Finite element modeling of the evolution of surface pits in metal forming processes. J Mater Process Technol 145:391–396.  https://doi.org/10.1016/j.jmatprotec.2003.09.007 CrossRefGoogle Scholar
  9. 9.
    Boman R, Ponthot JP (2004) Finite element simulation of lubricated contact in rolling using Arbitrary Lagrangian Eulerian formulation. Comput Methods Appl Mech Eng 193(39–41):4323–4353.  https://doi.org/10.1016/j.cma.2004.01.034 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Li S, Wang Z, Ruan J, Liu C, Xu Z (2016) Hydrodynamics method and its application in hot strip rolling. Steel recherché International 87(9999).  https://doi.org/10.1002/srin.201600220
  11. 11.
    Li S, Wang Z, Liu C, Ruan J, Xu Z (2016) A simplified method to calculate the rolling force in hot rolling. Int J Adv Manuf Technol. Springer-Verlag London 88:2053–2059.  https://doi.org/10.1007/s00170-016-8890-z CrossRefGoogle Scholar
  12. 12.
    Zhang DH, Yuan-Ming Liu YM, Sun J, Zhao DW (2016) A novel analytical approach to predict rolling force in hot strip finish rolling based on cosine velocity field and equal area criterion. Int J Adv Manuf Technol 84:843–850.  https://doi.org/10.1007/s00170-015-7692-z Google Scholar
  13. 13.
    He YX (2010) Rolling engineering, chemical industry. Press, Beijing, China, p 49Google Scholar
  14. 14.
    Barus C (1893) ART. X. Isothermals, isopiestics and isometrics relative to viscosity. Am J Sci (1880–1910); New Haven 45(266):87Google Scholar
  15. 15.
    MARSAULT N(1998) Modélisation du régime de Lubrification Mixte En Laminage à Froid. Doctorate thesis of Ecole Nationale Supérieure des Mines de Paris (France) p54–56Google Scholar
  16. 16.
    Montmitonnet P (1993) Lois de frottement et déformation plastique(Friction laws and plastic deformation). Mater Tech, 1–2-3,08 81:8–21.  https://doi.org/10.1051/mattech/199381010008 CrossRefGoogle Scholar
  17. 17.
    Oudin J(1990) Approches expérimentales et numériques des conditions de contact et de frottement (Experimental and numerical approaches to contact and friction conditions). Physique et mécanique de la mise en forme (Physics and mechanics of material’s forming) Ecole d’été d’Oléron, 406–435Google Scholar
  18. 18.
    Zaaf M, Labaiz M, Sidoroff F (2006) Evaluation de la sensibilité du laminage aux modèles de comportement (Evaluation of the rollingsensitivity to behaviormodels). Mécanique et industrie 7–4:393.  https://doi.org/10.1051/meca:2006053
  19. 19.
    Chen S, Li W, Liu X (2014) Calculation of rolling pressure distribution and force based on improved Karman equation for hot strip mill. Int J Mech Sci 89:256–263.  https://doi.org/10.1016/j.ijmecsci.2014.09.011 CrossRefGoogle Scholar
  20. 20.
    Cameron A (1970) A basic lubrification theory. Longman, LondonGoogle Scholar
  21. 21.
    Auslender F, Triffa M, Sidoroff F (1999) Material compressibility effects for the squeeze of very thin films. Eur. J. Mech. A/Solids 18(3):499–515.  https://doi.org/10.1016/S0997-7538(99)00111-4 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Auslender F (1996) Nanorhéologie des couches minces confinées. Application aux appareils à forces de surfaces (Nanorheology of confined thin layers). Thèse de Doctorat de l’école Centrale de Lyon (PhD thesis of the Ecole Centrale de Lyon)Google Scholar
  23. 23.
    Montmitonnet P (2006) Hot and cold rolling. Comput Methods Appl Mech Eng 195:6604–6625.  https://doi.org/10.1016/j.cma.2005.10.014 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Mohamed Zaaf
    • 1
    Email author
  • Abdelmalek Mebarek
    • 1
  • Abdelaaziz Amirat
    • 2
  1. 1.Laboratory of metal materials forming (LMF2M), Faculty of Engineering SciencesBadji Mokhtar University AnnabaAnnabaAlgeria
  2. 2.Research Laboratory of Advanced Technology in Mechanical Production, Faculty of Engineering SciencesBadji Mokhtar University AnnabaAnnabaAlgeria

Personalised recommendations