Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations

  • Aldo AttanasioEmail author
  • Andrea Abeni
  • Tuğrul Özel
  • Elisabetta Ceretti


Micro milling process of CuZn37 brass is considered important due to applications in tool production for micro moulding and micro replication technology. The variations in material properties, work material adhesion to tool surfaces, burr formation, and tool wear result in loss of productivity. The deformed chip shapes together with localized temperature, plastic strain, and cutting forces during micro milling process can be predicted using finite element (FE) modeling and simulation. However, tool-workpiece engagement suffers from tool run-out affecting process performance in surface generation. This work provides experimental investigations on effects of tool run-out as well as process insight obtained from simulation of chip flow, with and without considering tool run-out. Scanning electron microscope (SEM) observation of the 3D chip shapes demonstrates ductile deformed surfaces together with localized serration behavior. FE simulations are utilized to investigate the effects of micro milling operation, cutting speed, and feed rate on forces, chip flow, and shapes. Predicted cutting forces and chip flow results from simulations are compared with force measurements, tool run-out, and chip morphology revealing reasonable agreements.


Micro machining Finite element method (FEM) Force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dornfeld D, Mina S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55:745–768CrossRefGoogle Scholar
  2. 2.
    Cheng K, Huo D (2013) Micro cutting: fundamentals and applications. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  3. 3.
    Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann Manuf Technol 57:113–116CrossRefGoogle Scholar
  4. 4.
    Özel T, Bartolo P, Ceretti E, Ciurana J, Rodriguez CA, Lopes Da Silva JV (2016) Biomedical devices: design, prototyping and manufacturing. Wiley, HobokenCrossRefGoogle Scholar
  5. 5.
    Karagiannis S, Stavropoulos P, Ziogas C, Kechagias J (2013) Prediction of surface roughness magnitude in computer numerical controlled end milling processes using neural networks, by considering a set of influence parameters: an Aluminium alloy 5083 case study. Proc Inst Mech Eng B J Eng Manuf 228(2):233–244CrossRefGoogle Scholar
  6. 6.
    Annoni M, Pusterla N, Rebaioli L, Semeraro Q (2015) Calibration and validation of a mechanistic micromilling force prediction model. J Manuf Sci Eng 138:11001–11012CrossRefGoogle Scholar
  7. 7.
    Attanasio A, Garbellini A, Ceretti E, Giardini C (2015) Force modelling in micromilling of channels. Int J Nanomanuf 11(5–6):275–296CrossRefGoogle Scholar
  8. 8.
    Gelfi M, Attanasio A, Ceretti E, Garbellini A, Pola A (2015) Micromilling of lamellar Ti6Al4V: cutting force analysis. Mater Manuf Process 31(7):919–925CrossRefGoogle Scholar
  9. 9.
    Riviere-Lorphevre E, Letot C, Ducobu F, Dehombreux P, Filippi E (2017) Dynamic simulation of milling operations with small diameter milling cutters: effect of material heterogeneity on the cutting force model. Meccanica 52:35–44CrossRefGoogle Scholar
  10. 10.
    Wang JJ, Uhlmann E, Oberschmidt D, Sung CF, Perfilov I (2016) Critical depth of cut and asymptotic spindle speed for chatter in micro milling with process damping. CIRP Ann Manuf Technol 65(1):113–116CrossRefGoogle Scholar
  11. 11.
    Uhlmann E, Oberschmidt D, Kuche Y, Löwenstein A (2014) Cutting edge preparation of micro milling tools. Procedia CIRP 14:349–354CrossRefGoogle Scholar
  12. 12.
    Attanasio A (2017) Tool run-out measurement in micro milling. Micromachines 8:221CrossRefGoogle Scholar
  13. 13.
    Davoudinejad A, Tosello G, Parenti P, Annoni M (2017) 3D finite element simulation of micro end-milling by considering the effect of tool run-out. Micromachines 8(187):1–20Google Scholar
  14. 14.
    Mamedov A, Lazoglu I (2016) Thermal analysis of micro milling titanium alloy Ti-6Al-4V. J Mater Process Technol 229:659–667CrossRefGoogle Scholar
  15. 15.
    Thepsonthi T, Özel T (2015) 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: experimental validations on Chip flow and tool Wear. J Mater Process Technol 221:128–145CrossRefGoogle Scholar
  16. 16.
    Thepsonthi T, Özel T (2016) Simulation of serrated chip formation in micro-milling of titanium alloy Ti-6Al-4V using 2D elasto-viscoplastic finite element modeling. Prod Eng Res Dev 10(6):575–586CrossRefGoogle Scholar
  17. 17.
    Ucun I, Aslantas K, Bedir F (2016) Finite element modeling of micro-milling: numerical simulation and experimental validation. Mach Sci Technol 20(1):148–172CrossRefGoogle Scholar
  18. 18.
    Özel T, Olleak A, Thepsonthi T (2017) Micro milling of titanium alloy Ti-6Al-4V: 3-D finite element modeling for prediction of chip flow and burr formation. Prod Eng 11(4–5):435–444CrossRefGoogle Scholar
  19. 19.
    Biermann D, Kahnis P (2010) Analysis and simulation of size effects in micromilling. Product Eng Res Dev 4(1):25–34CrossRefGoogle Scholar
  20. 20.
    Park SS, Malekian M (2009) Mechanistic modeling and accurate measurement of micro end milling forces. CIRP Ann Manuf Technol 58:49–52CrossRefGoogle Scholar
  21. 21.
    Malekian M, Park SS, Jun MBG (2009) Modeling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49:586–598CrossRefGoogle Scholar
  22. 22.
    Altintas Y, Jin X (2011) Mechanics of micro-milling with round edge tools. CIRP Ann Manuf Technol 60(1):77–80CrossRefGoogle Scholar
  23. 23.
    Korkmaz E, Gozen BA Bediz B, Ozdoganlar OB (2017) Accurate measurement of micromachining forces through dynamic compensation of dynamometers. Precis Eng 49:365–376CrossRefGoogle Scholar
  24. 24.
    Kronenberg M (1966) Machining science and application. Pergamon PressGoogle Scholar
  25. 25.
    Johnson GJ, Cook WH (1983) A constitutive model and data for metals subjected tool large strains, high strain rates and high temperatures. Proc 7th international Symposium on Ballistics 541–547Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of BresciaBresciaItaly
  2. 2.Industrial and Systems EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations