Advertisement

An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications

  • E. Bagherpour
  • N. Pardis
  • M. ReihanianEmail author
  • R. Ebrahimi
ORIGINAL ARTICLE
  • 157 Downloads

Abstract

The present overview gives a new approach toward developments and recent achievements in severe plastic deformation. The review focuses on several subjects. First, an outline of SPD research status in the world is presented by literature analysis based on the total number of publications, citations, and the contribution of the top-ranked countries. Second, the mechanisms of grain refinement and grain growth during SPD processing are discussed by means of the latest concepts. Third, all SPD methods invented so far are classified based on a new approach. Up to now, the growing tendency of researchers to introduce new SPD techniques results in a large number of SPD methods which can be considered as new or modified techniques or a combination of previous ones. Such a reference can help to prevent the future duplication to introduce the SPD processes, which are technically similar. At the end, the practical applications of ultrafine/nanostructured materials and industrial commercialization of SPD methods are summarized.

Keywords

Severe plastic deformation Nanostructured materials Grain refinement Research status Application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The financial support of Shahid Chamran University of Ahvaz and Shiraz University is gratefully appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45(2):103–189Google Scholar
  2. 2.
    Valiev R, Estrin Y, Horita Z, Langdon T, Zehetbauer M, Zhu Y (2016) Fundamentals of superior properties in bulk nanoSPD materials. Materials Research Letters 4(1):1–21Google Scholar
  3. 3.
    Azushima A, Kopp R, Korhonen A, Yang D, Micari F, Lahoti G, Groche P, Yanagimoto J, Tsuji N, Rosochowski A (2008) Severe plastic deformation (SPD) processes for metals. CIRP Ann 57(2):716–735Google Scholar
  4. 4.
    Langdon TG Processing by severe plastic deformation: historical developments and current impact. In: Materials Science Forum, 2010 vol 667. p 9Google Scholar
  5. 5.
    Bridgman P (1943) On torsion combined with compression. J Appl Phys 14(6):273–283Google Scholar
  6. 6.
    Bridgman PW (1952) Studies in large plastic flow and fracture, vol 177. McGraw-Hill New York,Google Scholar
  7. 7.
    Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53(6):893–979Google Scholar
  8. 8.
    Smirnova N, Levit V, Pilyugin V, Kuznetsov R, Davydova L, Sazonova V (1986) Evolution of the FCC single-crystal structure during severe plastic-deformations. Fiz Met Metalloved 61(6):1170–1177Google Scholar
  9. 9.
    Segal V, Reznikov V, Dobryshevshiy A, Kopylov V (1981) Plastic working of metals by simple shear. Russian Metallurgy (Metally) 1:99–105Google Scholar
  10. 10.
    Valiev RZ, Krasilnikov N, Tsenev N (1991) Plastic deformation of alloys with submicron-grained structure. Mater Sci Eng A 137:35–40Google Scholar
  11. 11.
    Valiev R, Korznikov A, Mulyukov R (1993) Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater Sci Eng A 168(2):141–148Google Scholar
  12. 12.
    Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51(7):881–981Google Scholar
  13. 13.
    Bridgman PW (1935) Effects of high shearing stress combined with high hydrostatic pressure. Phys Rev 48(10):825Google Scholar
  14. 14.
    Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R (1998) Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr Mater 39(9):1221–1227Google Scholar
  15. 15.
    Furukawa M, Horita Z, Nemoto M, Langdon T (2001) Processing of metals by equal-channel angular pressing. J Mater Sci 36(12):2835–2843Google Scholar
  16. 16.
    Kawasaki M, Langdon TG (2016) Achieving superplastic properties in ultrafine-grained materials at high temperatures. J Mater Sci 51(1):19–32Google Scholar
  17. 17.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. Jom 58(4):33–39Google Scholar
  18. 18.
    Beyerlein IJ, Tóth LS (2009) Texture evolution in equal-channel angular extrusion. Prog Mater Sci 54(4):427–510Google Scholar
  19. 19.
    Figueiredo RB, Langdon TG (2012) Fabricating ultrafine-grained materials through the application of severe plastic deformation: a review of developments in Brazil. Journal of Materials Research and Technology 1(1):55–62Google Scholar
  20. 20.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu Y (2016) Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM 68(4):1216–1226.  https://doi.org/10.1007/s11837-016-1820-6 Google Scholar
  21. 21.
    Edalati K, Horita Z (2016) A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A 652:325–352Google Scholar
  22. 22.
    Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61(3):782–817Google Scholar
  23. 23.
    Toth LS, Gu C (2014) Ultrafine-grain metals by severe plastic deformation. Mater Charact 92:1–14Google Scholar
  24. 24.
    Rosochowski A (2005) Processing metals by severe plastic deformation. In: Solid State Phenomena, Trans Tech Publ, pp 13–22Google Scholar
  25. 25.
    Verlinden B (2005) Severe plastic deformation of metals. Metalurgija 11(3):165–182Google Scholar
  26. 26.
    Wang C, Li F, Wang L, Qiao H (2012) Review on modified and novel techniques of severe plastic deformation. SCIENCE CHINA Technol Sci 55(9):2377–2390Google Scholar
  27. 27.
    Hohenwarter A (2015) Incremental high pressure torsion as a novel severe plastic deformation process: processing features and application to copper. Mater Sci Eng A 626:80–85Google Scholar
  28. 28.
    Sakai G, Nakamura K, Horita Z, Langdon TG (2005) Developing high-pressure torsion for use with bulk samples. Mater Sci Eng A 406(1–2):268–273Google Scholar
  29. 29.
    Edalati K, Horita Z (2010) Continuous high-pressure torsion. J Mater Sci 45(17):4578–4582Google Scholar
  30. 30.
    Valiev R, Kuznetsov O, Musalimov RS, Tsenev N (1988) Low-temperature superplasticity of metallic materials. In: Soviet Physics Doklady. p 626Google Scholar
  31. 31.
    Tao N, Lu K (2009) Nanoscale structural refinement via deformation twinning in face-centered cubic metals. Scr Mater 60(12):1039–1043Google Scholar
  32. 32.
    Sachs G (1928) Zur Ableitung einer Fliessbedingung. Z Ver Dtsch Ing 72:734–736Google Scholar
  33. 33.
    Kocks UF, Tome CN, Wenk H-R (1998) Texture and anisotropy. Preferred orientations in polycrystals and their effect on material properties. Cambridge University Press, ISBN 521465168:12–30Google Scholar
  34. 34.
    Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307–324Google Scholar
  35. 35.
    Huang JY, Zhu YT, Jiang H, Lowe TC (2001) Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater 49(9):1497–1505.  https://doi.org/10.1016/S1359-6454(01)00069-6 Google Scholar
  36. 36.
    Hughes DA, Hansen N (1997) High angle boundaries formed by grain subdivision mechanisms. Acta Mater 45(9):3871–3886.  https://doi.org/10.1016/S1359-6454(97)00027-X Google Scholar
  37. 37.
    Hansen N, Mehl RF (2001) New discoveries in deformed metals. Metall Mater Trans A 32(12):2917–2935Google Scholar
  38. 38.
    Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60:130–207Google Scholar
  39. 39.
    Kamikawa N, Tsuji N, Huang X, Hansen N (2006) Quantification of annealed microstructures in ARB processed aluminum. Acta Mater 54(11):3055–3066Google Scholar
  40. 40.
    Xue Q, Beyerlein I, Alexander D, Gray Iii G (2007) Mechanisms for initial grain refinement in OFHC copper during equal channel angular pressing. Acta Mater 55(2):655–668Google Scholar
  41. 41.
    Kamikawa N, Sakai T, Tsuji N (2007) Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel. Acta Mater 55(17):5873–5888Google Scholar
  42. 42.
    Sakai T, Belyakov A, Miura H (2008) Ultrafine grain formation in ferritic stainless steel during severe plastic deformation. Metall Mater Trans A 39(9):2206Google Scholar
  43. 43.
    Hansen N (1990) Cold deformation microstructures. Materials Science and Technology (United Kingdom) 6(11):1039–1047.  https://doi.org/10.1179/mst.1990.6.11.1039 Google Scholar
  44. 44.
    Bay B, Hansen N, Hughes DA, Kuhlmann-Wilsdorf D (1992) Overview no. 96 evolution of F.C.C. deformation structures in polyslip. Acta Metall Mater 40(2):205–219.  https://doi.org/10.1016/0956-7151(92)90296-Q Google Scholar
  45. 45.
    Liu CD, Bassim MN, You DX (1994) Dislocation structures in fatigued polycrystalline copper. Acta Metall Mater 42(11):3695–3704.  https://doi.org/10.1016/0956-7151(94)90435-9 Google Scholar
  46. 46.
    Lu K, Hansen N (2009) Structural refinement and deformation mechanisms in nanostructured metals. Scr Mater 60(12):1033–1038Google Scholar
  47. 47.
    Wang K, Tao N, Liu G, Lu J, Lu K (2006) Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater 54(19):5281–5291Google Scholar
  48. 48.
    Li W, Tao N, Lu K (2008) Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scr Mater 59(5):546–549Google Scholar
  49. 49.
    Zhang H, Hei Z, Liu G, Lu J, Lu K (2003) Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater 51(7):1871–1881Google Scholar
  50. 50.
    Victoria-Hernández J, Suh J, Yi S, Bohlen J, Volk W, Letzig D (2016) Strain-induced selective grain growth in AZ31 Mg alloy sheet deformed by equal channel angular pressing. Mater Charact 113:98–107.  https://doi.org/10.1016/j.matchar.2016.01.002 Google Scholar
  51. 51.
    Horita Z, Langdon TG (2005) Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion. Mater Sci Eng A 410-411:422–425.  https://doi.org/10.1016/j.msea.2005.08.133 Google Scholar
  52. 52.
    Wetscher F, Pippan R (2006) Cyclic high-pressure torsion of nickel and Armco iron. Philos Mag 86(36):5867–5883.  https://doi.org/10.1080/14786430600838288 Google Scholar
  53. 53.
    Orlov D, Todaka Y, Umemoto M, Tsuji N (2009) Role of strain reversal in grain refinement by severe plastic deformation. Mater Sci Eng A 499(1):427–433.  https://doi.org/10.1016/j.msea.2008.09.036 Google Scholar
  54. 54.
    Bagherpour E, Qods F, Ebrahimi R, Miyamoto H (2016) Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): role of shear reversal. Mater Sci Eng A 666(Supplement C):324–338.  https://doi.org/10.1016/j.msea.2016.04.080 Google Scholar
  55. 55.
    Bagherpour E, Qods F, Ebrahimi R, Miyamoto H (2016) Texture changes during simple shear extrusion (SSE) processing of pure copper. Mater Trans 57(9):1386–1391.  https://doi.org/10.2320/matertrans.MH201501 Google Scholar
  56. 56.
    Bagherpour E, Qods F, Ebrahimi R, Miyamoto H (2017) Nanostructured pure copper fabricated by simple shear extrusion (SSE): a correlation between microstructure and tensile properties. Mater Sci Eng A 679(Supplement C):465–475.  https://doi.org/10.1016/j.msea.2016.10.068 Google Scholar
  57. 57.
    Bagherpour E, Qods F, Ebrahimi R, Miyamoto H (2018) Strain reversal in simple shear extrusion (SSE) processing: microstructure investigations and mechanical properties. In: AIP Conference Proceedings. vol 1. AIP Publishing, p 020007Google Scholar
  58. 58.
    Sheikh H, Ebrahimi R, Bagherpour E (2016) Crystal plasticity finite element modeling of crystallographic textures in simple shear extrusion (SSE) process. Mater Des 109(Supplement C):289–299.  https://doi.org/10.1016/j.matdes.2016.07.030 Google Scholar
  59. 59.
    Derby B (1991) The dependence of grain size on stress during dynamic recrystallisation. Acta Metall Mater 39(5):955–962.  https://doi.org/10.1016/0956-7151(91)90295-C Google Scholar
  60. 60.
    Wang YB, Ho JC, Liao XZ, Li HQ, Ringer SP, Zhu YT (2009) Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni–Fe alloy. Appl Phys Lett 94(1):011908.  https://doi.org/10.1063/1.3065025 Google Scholar
  61. 61.
    Korznikov AV, Tyumentsev AN, Ditenberg IA (2008) On the limiting minimum size of grains formed in metallic materials produced by high-pressure torsion. Phys Met Metallogr 106(4):418–423.  https://doi.org/10.1134/S0031918X08100128 Google Scholar
  62. 62.
    Korznikova EA, Dmitriev SV (2014) Mechanisms of deformation-induced grain growth of a two-dimensional nanocrystal at different deformation temperatures. Phys Met Metallogr 115(6):570–575.  https://doi.org/10.1134/S0031918X14060088 Google Scholar
  63. 63.
    Edalati K, Ito Y, Suehiro K, Horita Z (2009) Softening of high purity aluminum and copper processed by high pressure torsion. Int J Mater Res 100(12):1668–1673.  https://doi.org/10.3139/146.110231 Google Scholar
  64. 64.
    Agnew SR, Weertman JR (1998) Cyclic softening of ultrafine grain copper. Mater Sci Eng A 244(2):145–153.  https://doi.org/10.1016/S0921-5093(97)00689-8 Google Scholar
  65. 65.
    Alvandi H, Farmanesh K (2015) Microstructural and mechanical properties of nano/ultra-fine structured 7075 aluminum alloy by accumulative roll-bonding process. Proceedings of the 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials. Procedia Materials Science 11:17–23Google Scholar
  66. 66.
    Tamimi S, Ketabchi M, Parvin N, Sanjari M, Lopes A (2014) Accumulative roll bonding of pure copper and IF steel. Int J Met 2014:9Google Scholar
  67. 67.
    Sansoz F, Dupont V (2006) Grain growth behavior at absolute zero during nanocrystalline metal indentation. Appl Phys Lett 89 (11). doi: https://doi.org/10.1063/1.2352725
  68. 68.
    Wang YB, Li BQ, Sui ML, Mao SX (2008) Deformation-induced grain rotation and growth in nanocrystalline Ni. Appl Phys Lett 92(1):011903.  https://doi.org/10.1063/1.2828699 Google Scholar
  69. 69.
    Gutkin MY, Ovid'ko IA, Skiba NV (2003) Crossover from grain boundary sliding to rotational deformation in nanocrystalline materials. Acta Mater 51(14):4059–4071.  https://doi.org/10.1016/S1359-6454(03)00226-X Google Scholar
  70. 70.
    Farkas D, Frøseth A, Van Swygenhoven H (2006) Grain boundary migration during room temperature deformation of nanocrystalline Ni. Scr Mater 55(8):695–698.  https://doi.org/10.1016/j.scriptamat.2006.06.032 Google Scholar
  71. 71.
    Legros M, Gianola DS, Hemker KJ (2008) In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56(14):3380–3393.  https://doi.org/10.1016/j.actamat.2008.03.032 Google Scholar
  72. 72.
    Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. Science 300(5623):1275–1277.  https://doi.org/10.1126/science.1083727 Google Scholar
  73. 73.
    Liao XZ, Zhou F, Lavernia EJ, Srinivasan SG, Baskes MI, He DW, Zhu YT (2003) Deformation mechanism in nanocrystalline Al: partial dislocation slip. Appl Phys Lett 83(4):632–634.  https://doi.org/10.1063/1.1594836 Google Scholar
  74. 74.
    Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl Phys Lett 84(4):592–594.  https://doi.org/10.1063/1.1644051 Google Scholar
  75. 75.
    Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat Mater 1:45.  https://doi.org/10.1038/nmat700 https://www.nature.com/articles/nmat700#supplementary-information Google Scholar
  76. 76.
    Kiritani M (1997) Story of stacking fault tetrahedra. Mater Chem Phys 50(2):133–138.  https://doi.org/10.1016/S0254-0584(97)80250-7 Google Scholar
  77. 77.
    Huang CX, Wang K, Wu SD, Zhang ZF, Li GY, Li SX (2006) Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater 54(3):655–665.  https://doi.org/10.1016/j.actamat.2005.10.002 Google Scholar
  78. 78.
    Kim K, Yoon J (2013) Evolution of the microstructure and mechanical properties of AZ61 alloy processed by half channel angular extrusion (HCAE), a novel severe plastic deformation process. Mater Sci Eng A 578:160–166Google Scholar
  79. 79.
    Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267–275.  https://doi.org/10.1063/1.1707586 Google Scholar
  80. 80.
    Kanani M, Sohrabi S, Ebrahimi R, Paydar MH (2014) Continuous and ultra-fine grained chip production with large strain machining. J Mater Process Technol 214(8):1777–1786.  https://doi.org/10.1016/j.jmatprotec.2014.03.028 Google Scholar
  81. 81.
    Nakashima K, Horita Z, Nemoto M, Langdon TG (2000) Development of a multi-pass facility for equal-channel angular pressing to high total strains. Mater Sci Eng A 281(1):82–87Google Scholar
  82. 82.
    Zangiabadi A, Kazeminezhad M (2011) Development of a novel severe plastic deformation method for tubular materials: tube channel pressing (TCP). Mater Sci Eng A 528(15):5066–5072Google Scholar
  83. 83.
    Nagasekhar A, Chakkingal U, Venugopal P (2006) Candidature of equal channel angular pressing for processing of tubular commercial purity-titanium. J Mater Process Technol 173(1):53–60Google Scholar
  84. 84.
    Djavanroodi F, Zolfaghari AA, Ebrahimi M, Nikbin K (2014) Route effect on equal channel angular pressing of copper tube. Acta Metallurgica Sinica (English Letters) 27(1):95–100Google Scholar
  85. 85.
    Faraji G, Mashhadi MM, Kim HS (2011) Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes. Mater Lett 65(19):3009–3012Google Scholar
  86. 86.
    Farshidi MH, Kazeminezhad M, Miyamoto H (2014) Microstructrual evolution of aluminum 6061 alloy through tube channel pressing. Mater Sci Eng A 615:139–147.  https://doi.org/10.1016/j.msea.2014.07.061 Google Scholar
  87. 87.
    Faraji G, Babaei A, Mashhadi MM, Abrinia K (2012) Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes. Mater Lett 77:82–85Google Scholar
  88. 88.
    Utsunomiya H, Hatsuda K, Sakai T, Saito Y (2004) Continuous grain refinement of aluminum strip by conshearing. Mater Sci Eng A 372(1):199–206Google Scholar
  89. 89.
    Lee J-C, Seok H-K, Han J-H, Chung Y-H (2001) Controlling the textures of the metal strips via the continuous confined strip shearing(C2S2) process. Mater Res Bull 36(5–6):997–1004.  https://doi.org/10.1016/S0025-5408(01)00557-8 Google Scholar
  90. 90.
    Lee J-C, Seok H-K, Suh J-Y (2002) Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing. Acta Mater 50(16):4005–4019Google Scholar
  91. 91.
    Han J-H, Seok H-K, Chung Y-H, Shin M-C, Lee J-C (2002) Texture evolution of the strip cast 1050 Al alloy processed by continuous confined strip shearing and its formability evaluation. Mater Sci Eng A 323(1):342–347Google Scholar
  92. 92.
    Xu C, Schroeder S, Berbon PB, Langdon TG (2010) Principles of ECAP–Conform as a continuous process for achieving grain refinement: application to an aluminum alloy. Acta Mater 58(4):1379–1386Google Scholar
  93. 93.
    Fakhretdinova E, Raab GI, Ganiev M (2015) Development of a force parameter model for a new severe plastic deformation technique—multi-ECAP-Conform. In: Applied mechanics and materials. Trans Tech Publ, pp 386–390Google Scholar
  94. 94.
    Huang Y, Prangnell P (2007) Continuous frictional angular extrusion and its application in the production of ultrafine-grained sheet metals. Scr Mater 56(5):333–336Google Scholar
  95. 95.
    Pardis N, Ebrahimi R (2009) Deformation behavior in simple shear extrusion (SSE) as a new severe plastic deformation technique. Mater Sci Eng A 527(1):355–360.  https://doi.org/10.1016/j.msea.2009.08.051 Google Scholar
  96. 96.
    Pardis N, Ebrahimi R (2010) Different processing routes for deformation via simple shear extrusion (SSE). Mater Sci Eng A 527(23):6153–6156.  https://doi.org/10.1016/j.msea.2010.06.028 Google Scholar
  97. 97.
    Bagherpour E, Ebrahimi R, Qods F (2015) An analytical approach for simple shear extrusion process with a linear die profile. Mater Des 83(Supplement C):368–376.  https://doi.org/10.1016/j.matdes.2015.06.023 Google Scholar
  98. 98.
    Rifai M, Bagherpour E, Yamamoto G, Yuasa M, Miyamoto H (2018) Transition of dislocation structures in severe plastic deformation and its effect on dissolution in dislocation etchant. Adv Mater Sci Eng 2018Google Scholar
  99. 99.
    Bagherpour E, Reihanian M, Ebrahimi R (2012) On the capability of severe plastic deformation of twining induced plasticity (TWIP) steel. Materials & Design (1980–2015) 36(Supplement C):391–395.  https://doi.org/10.1016/j.matdes.2011.11.055 Google Scholar
  100. 100.
    Bagherpour E, Reihanian M, Ebrahimi R (2012) Processing twining induced plasticity steel through simple shear extrusion. Mater Des 40(Supplement C):262–267.  https://doi.org/10.1016/j.matdes.2012.03.055 Google Scholar
  101. 101.
    Morshed Behbahani K, Najafisayar P, Abbasi Z, Pakshir M, Ebrahimi R (2016) The effect of simple shear extrusion on the corrosion behavior of copper. Iran J Chem Chem Eng (IJCCE) 35(2):73–78Google Scholar
  102. 102.
    Tork NB, Pardis N, Ebrahimi R (2013) Investigation on the feasibility of room temperature plastic deformation of pure magnesium by simple shear extrusion process. Mater Sci Eng A 560(Supplement C):34–39.  https://doi.org/10.1016/j.msea.2012.08.085 Google Scholar
  103. 103.
    Bayat Tork N, Razavi SH, Saghafian H, Mahmudi R (2016) Superplasticity of a fine-grained Mg–1.5 wt% Gd alloy after severe plastic deformation. Iran J Mater Form 3(1):65–74.  https://doi.org/10.22099/ijmf.2016.3711 Google Scholar
  104. 104.
    Bayat Tork N, Razavi SH, Saghafian H, Mahmudi R (2017) Strain-rate sensitivity of Mg–Gd alloys after extrusion and simple shear extrusion. Mater Sci Technol 33(18):2244–2252.  https://doi.org/10.1080/02670836.2017.1374001 Google Scholar
  105. 105.
    Bagherpour E, Qods F, Ebrahimi R (2014) Effect of geometric parameters on deformation behavior of simple shear extrusion. IOP Conference Series: Mater Sci Eng 63(1):012046Google Scholar
  106. 106.
    Kim JG, Latypov M, Pardis N, Beygelzimer YE, Kim HS (2015) Finite element analysis of the plastic deformation in tandem process of simple shear extrusion and twist extrusion. Mater Des 83:858–865Google Scholar
  107. 107.
    Sheikh H, Ebrahimi R (2017) Modeling the effect of strain reversal on grain refinement and crystallographic texture during simple shear extrusion. Int J Solids Struct 126:175–186Google Scholar
  108. 108.
    Lee DN (2000) An upper-bound solution of channel angular deformation. Scr Mater 43(2):115–118Google Scholar
  109. 109.
    Tóth LS, Lapovok R, Hasani A, Gu C (2009) Non-equal channel angular pressing of aluminum alloy. Scr Mater 61(12):1121–1124Google Scholar
  110. 110.
    Lu L, Liu T, Chen Y, Wang L, Wang Z (2012) Double change channel angular pressing of magnesium alloys AZ31. Mater Des 35:138–143Google Scholar
  111. 111.
    Paydar M, Reihanian M, Bagherpour E, Sharifzadeh M, Zarinejad M, Dean T (2009) Equal channel angular pressing–forward extrusion (ECAP–FE) consolidation of Al particles. Mater Des 30(3):429–432Google Scholar
  112. 112.
    Paydar MH, Reihanian M, Bagherpour E, Sharifzadeh M, Zarinejad M, Dean TA (2008) Consolidation of Al particles through forward extrusion-equal channel angular pressing (FE-ECAP). Mater Lett 62(17–18):3266–3268.  https://doi.org/10.1016/j.matlet.2008.02.038 Google Scholar
  113. 113.
    Rosochowski A, Rosochowska M, Olejnik L (2012) New SPD process of incremental angular splitting. Key Eng Mater 504:569–574Google Scholar
  114. 114.
    Mizunuma S (2006) Large straining behavior and microstructure refinement of several metals by torsion extrusion process. In: Materials Science Forum, Trans Tech Publ, pp 185–192Google Scholar
  115. 115.
    Jahedi M, Paydar MH (2011) Three-dimensional finite element analysis of torsion extrusion (TE) as an SPD process. Mater Sci Eng A 528(29):8742–8749Google Scholar
  116. 116.
    Shahbaz M, Pardis N, Ebrahimi R, Talebanpour B (2011) A novel single pass severe plastic deformation technique: vortex extrusion. Mater Sci Eng A 530:469–472Google Scholar
  117. 117.
    Shahbaz M, Pardis N, Kim J, Ebrahimi R, Kim H (2016) Experimental and finite element analyses of plastic deformation behavior in vortex extrusion. Mater Sci Eng A 674:472–479Google Scholar
  118. 118.
    Li F, Zeng X, Bian N (2014) Microstructure of AZ31 magnesium alloy produced by continuous variable cross-section direct extrusion (CVCDE). Mater Lett 135(0):79–82.  https://doi.org/10.1016/j.matlet.2014.07.116 Google Scholar
  119. 119.
    Li F, Zeng X, Cao GJ (2015) Investigation of microstructure characteristics of the CVCDEed AZ31 magnesium alloy. Mater Sci Eng A 639:395–401.  https://doi.org/10.1016/j.msea.2015.05.042 Google Scholar
  120. 120.
    Neugebauer R, Sterzing A, Selbmann R, Zachäus R, Bergmann M (2012) Gradation extrusion—severe plastic deformation with defined gradient. Mater Werkst 43(7):582–588Google Scholar
  121. 121.
    Landgrebe D, Sterzing A, Schubert N, Bergmann M (2016) Influence of die geometry on performance in gradation extrusion using numerical simulation and analytical calculation. CIRP Ann - Manuf Technol 65(1):269–272.  https://doi.org/10.1016/j.cirp.2016.04.128 Google Scholar
  122. 122.
    Orlov D, Raab G, Lamark TT, Popov M, Estrin Y (2011) Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Mater 59(1):375–385Google Scholar
  123. 123.
    Chen Q, Zhao Z, Shu D, Zhao Z (2011) Microstructure and mechanical properties of AZ91D magnesium alloy prepared by compound extrusion. Mater Sci Eng A 528(10):3930–3934Google Scholar
  124. 124.
    Li YZ, Du XF (2013) Plastic deformation simulation on compound twist extrusion process for metal materials. In: Applied Mechanics and Materials. Trans Tech Publ, pp 2676–2679Google Scholar
  125. 125.
    Li F, Jiang HW, Chen Q, Liu Y (2016) New extrusion method for reducing load and refining grains for magnesium alloy. Int J Adv Manuf Technol 1–7Google Scholar
  126. 126.
    Swaminathan S, Brown T, Chandrasekar S, McNelley T, Compton W (2007) Severe plastic deformation of copper by machining: microstructure refinement and nanostructure evolution with strain. Scr Mater 56(12):1047–1050Google Scholar
  127. 127.
    Moscoso W, Shankar MR, Mann J, Compton W, Chandrasekar S (2007) Bulk nanostructured materials by large strain extrusion machining. J Mater Res 22(01):201–205Google Scholar
  128. 128.
    Dawes (1991) WMTDNCNGMT-SJ Friction weldingGoogle Scholar
  129. 129.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50(1):1–78.  https://doi.org/10.1016/j.mser.2005.07.001 Google Scholar
  130. 130.
    Sabirov I, Enikeev NA, Murashkin MY, Valiev RZ (2015) Bulk nanostructured metals for innovative applications. In: Sabirov I, Enikeev NA, Murashkin MY, Valiev RZ (eds) Bulk nanostructured materials with multifunctional properties. Springer International Publishing, Cham, pp 101–113.  https://doi.org/10.1007/978-3-319-19599-5_4 Google Scholar
  131. 131.
    Lowe TC (2006) Metals and alloys nanostructured by severe plastic deformation: commercialization pathways. JOM 58(4):28.  https://doi.org/10.1007/s11837-006-0212-8 Google Scholar
  132. 132.
    Valiev RZ, Zehetbauer MJ, Estrin Y, Höppel HW, Ivanisenko Y, Hahn H, Wilde G, Roven HJ, Sauvage X, Langdon TG (2007) The innovation potential of bulk nanostructured materials. Adv Eng Mater 9(7):527–533.  https://doi.org/10.1002/adem.200700078 Google Scholar
  133. 133.
    Ferrasse S, Alford F, Grabmeier S, Düvel A, Zedlitz R, Strothers S, Evans J, Daniels B (2003) ECAE® targets with sub-micron grain structures improve sputtering performance and cost-of-ownership. Honeywell International Inc. (http://www.honeywell.com/sites/docs/doc128e30a-f9d1a68f6a-e0df9bfada07602278603c6cb43673fb.pdf), Technology White Paper
  134. 134.
    Ferrasse S, Segal VM, Alford F, Kardokus J, Strothers S (2008) Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries. Mater Sci Eng A 493(1):130–140.  https://doi.org/10.1016/j.msea.2007.04.133 Google Scholar
  135. 135.
    (2006). Biocompatible materials, US industry study with forecasts to 2010 & 2015, Study #2111, the Freedonia Group:264Google Scholar
  136. 136.
    Mora-Sanchez H, Sabirov I, Monclus MA, Matykina E, Molina-Aldareguia JM (2016) Ultra-fine grained pure titanium for biomedical applications. Mater Technol 31(13):756–771.  https://doi.org/10.1080/10667857.2016.1238131 Google Scholar
  137. 137.
    Mishnaevsky L, Levashov E, Valiev RZ, Segurado J, Sabirov I, Enikeev N, Prokoshkin S, Solov’yov AV, Korotitskiy A, Gutmanas E, Gotman I, Rabkin E, Psakh’e S, Dluhoš L, Seefeldt M, Smolin A (2014) Nanostructured titanium-based materials for medical implants: modeling and development. Mater Sci Eng R Rep 81(Supplement C):1–19.  https://doi.org/10.1016/j.mser.2014.04.002 Google Scholar
  138. 138.
    Elias CN, Meyers MA, Valiev RZ, Monteiro SN (2013) Ultrafine grained titanium for biomedical applications: an overview of performance. Journal of Materials Research and Technology 2(4):340–350.  https://doi.org/10.1016/j.jmrt.2013.07.003 Google Scholar
  139. 139.
    Webster TJ, Siegel RW, Bizios R (1999) Osteoblast adhesion on nanophase ceramics. Biomaterials 20(13):1221–1227.  https://doi.org/10.1016/S0142-9612(99)00020-4 Google Scholar
  140. 140.
    Webster TJ, Ejiofor JU (2003) Increased, directed osteoblast adhesion at nanophase Ti and Ti6A14V particle boundaries. In: Materials Research Society Symposium - Proceedings. pp 393–398Google Scholar
  141. 141.
    Durmus NG, Webster TJ (2012) Nanostructured titanium: the ideal material for improving orthopedic implant efficacy? Nanomedicine 7(6):791–793.  https://doi.org/10.2217/nnm.12.53 Google Scholar
  142. 142.
    Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ (2001) Influence of ECAP routes on the microstructure and properties of pure Ti. Mater Sci Eng A 299(1):59–67.  https://doi.org/10.1016/S0921-5093(00)01411-8 Google Scholar
  143. 143.
    Sordi VL, Ferrante M, Kawasaki M, Langdon TG (2012) Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling. J Mater Sci 47(22):7870–7876.  https://doi.org/10.1007/s10853-012-6593-x Google Scholar
  144. 144.
    Gunderov DV, Polyakov AV, Semenova IP, Raab GI, Churakova AA, Gimaltdinova EI, Sabirov I, Segurado J, Sitdikov VD, Alexandrov IV, Enikeev NA, Valiev RZ (2013) Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater Sci Eng A 562(Supplement C):128–136.  https://doi.org/10.1016/j.msea.2012.11.007 Google Scholar
  145. 145.
    Roodposhti PS, Farahbakhsh N, Sarkar A, Murty KL (2015) Microstructural approach to equal channel angular processing of commercially pure titanium—a review. Trans Nonferrous Metals Soc China 25(5):1353–1366.  https://doi.org/10.1016/S1003-6326(15)63734-7 Google Scholar
  146. 146.
    Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK (2001) Advanced mechanical properties of pure titanium with ultrafine grained structure. Scr Mater 45(7):747–752.  https://doi.org/10.1016/S1359-6462(01)01089-2 Google Scholar
  147. 147.
    Wang CT, Fox AG, Langdon TG (2014) Microstructural evolution in ultrafine-grained titanium processed by high-pressure torsion under different pressures. J Mater Sci 49(19):6558–6564.  https://doi.org/10.1007/s10853-014-8248-6 Google Scholar
  148. 148.
    Islamgaliev RK, Kazyhanov VU, Shestakova LO, Sharafutdinov AV, Valiev RZ (2008) Microstructure and mechanical properties of titanium (grade 4) processed by high-pressure torsion. Mater Sci Eng A 493(1):190–194.  https://doi.org/10.1016/j.msea.2007.08.084 Google Scholar
  149. 149.
    Valiev RZ, Semenova IP, Latysh VV, Rack H, Lowe TC, Petruzelka J, Dluhos L, Hrusak D, Sochova J (2008) Nanostructured titanium for biomedical applications. Adv Eng Mater 10(8):B15–B17.  https://doi.org/10.1002/adem.200800026 Google Scholar
  150. 150.
    Valiev R, Semenova I, Latysh V, Shcherbakov A, Yakushina E (2008) Nanostructured titanium for biomedical applications: new developments and challenges for commercialization. Nanotechnologies in Russia 3(9–10):593–601Google Scholar
  151. 151.
    Valiev R (2006) The new SPD processing trends to fabricate bulk nanostructured materials. In: Solid State Phenomena, Trans Tech Publ, pp 7–18Google Scholar
  152. 152.
    Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353.  https://doi.org/10.1038/35104634 Google Scholar
  153. 153.
    Skripnyuk VM, Rabkin E, Estrin Y, Lapovok R (2004) The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt% Zn–0.71 wt% Zr (ZK60) alloy. Acta Mater 52(2):405–414.  https://doi.org/10.1016/j.actamat.2003.09.025 Google Scholar
  154. 154.
    Wang L, Jiang J, Ma A, Li Y, Song D (2017) A critical review of mg-based hydrogen storage materials processed by equal channel angular pressing. Metals 7(9).  https://doi.org/10.3390/met7090324
  155. 155.
    Grill A, Horky J, Panigrahi A, Krexner G, Zehetbauer M (2015) Long-term hydrogen storage in Mg and ZK60 after severe plastic deformation. Int J Hydrog Energy 40(47):17144–17152.  https://doi.org/10.1016/j.ijhydene.2015.05.145 Google Scholar
  156. 156.
    Berbon PB, Furukawa M, Horita Z, Nemoto M, Langdon TG (1999) Influence of pressing speed on microstructural development in equal-channel angular pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 30(8):1989–1997.  https://doi.org/10.1007/s11661-999-0009-9 Google Scholar
  157. 157.
    Zisman A, Rybin V, Van Boxel S, Seefeldt M, Verlinden B (2006) Equal channel angular drawing of aluminium sheet. Mater Sci Eng A 427(1):123–129Google Scholar
  158. 158.
    León J, Luis-Pérez C (2006) Analysis of stress and strain in the equal channel angular drawing process. In: Materials Science Forum. Trans Tech Publ, pp 19–24Google Scholar
  159. 159.
    Zhu X, Xu XJ, Zhao Z, Chong K, Cheng C, Cheng XN (2011) The novel continuous large deformation technology integrating conventional rolling with equal-channel angular technology. In: Materials Science Forum. Trans Tech Publ, pp 127–132Google Scholar
  160. 160.
    Chen B, Lin DL, Zeng XQ, Lu C (2006) Single roll drive equal channel angular process—a potential severe plastic deformation (spd) process for industrial application. In: Materials Science Forum. Trans Tech Publ, pp 557–560Google Scholar
  161. 161.
    Rosochowski A, Olejnik L (2008) Finite element analysis of two-turn incremental ECAP. Int J Mater Form 1(1):483–486Google Scholar
  162. 162.
    Rosochowski A, Olejnik L, Richert MW (2008) Double-billet incremental ECAP. In: Materials Science Forum. Trans Tech Publ, pp 139–144Google Scholar
  163. 163.
    Olejnik L, Rosochowski A, Richert MW (2008) Incremental ECAP of plates. In: Materials Science Forum. Trans Tech Publ, pp 108–113Google Scholar
  164. 164.
    Bruder E, GÃķrtan MO, Groche P, MÞller C (2010) Severe plastic deformation by equal channel angular swaging. In: Materials Science Forum. Trans Tech Publ, pp 103–107Google Scholar
  165. 165.
    Raab G (2005) Plastic flow at equal channel angular processing in parallel channels. Mater Sci Eng A 410:230–233Google Scholar
  166. 166.
    Rosochowski A, Olejnik L, Richert M (2007) 3D-ECAP of square aluminium billets. In: Advanced Methods in Material Forming. Springer, pp 215–232Google Scholar
  167. 167.
    Olejnik L, Rosochowski A (2005) Methods of fabricating metals for nano-technology. Technical Sciences 53 (4)Google Scholar
  168. 168.
    Talebanpour B, Ebrahimi R, Janghorban K (2009) Microstructural and mechanical properties of commercially pure aluminum subjected to dual equal channel lateral extrusion. Mater Sci Eng A 527(1):141–145Google Scholar
  169. 169.
    Yoon SC, Seo MH, Krishnaiah A, Kim HS (2008) Finite element analysis of rotary-die equal channel angular pressing. Mater Sci Eng A 490(1):289–292Google Scholar
  170. 170.
    Nishida Y, Arima H, Kim J-C, Ando T (2001) Rotary-die equal-channel angular pressing of an Al – 7 mass% Si – 0.35 mass% Mg alloy. Scr Mater 45(3):261–266.  https://doi.org/10.1016/S1359-6462(01)00985-X Google Scholar
  171. 171.
    Nagasekhar AV, Kim HS (2008) Analysis of T-shaped equal channel angular pressing using the finite element method. Met Mater Int 14(5):565–568Google Scholar
  172. 172.
    Rao VS, Kashyap BP, Prabhu N, Hodgson PD (2008) T-shaped equi-channel angular pressing of Pb–Sn eutectic and its tensile properties. Mater Sci Eng A 486(1–2):341–349.  https://doi.org/10.1016/j.msea.2007.09.004 Google Scholar
  173. 173.
    Nagasekhar AV, Kim HS (2008) Plastic deformation characteristics of cross-equal channel angular pressing. Comput Mater Sci 43(4):1069–1073Google Scholar
  174. 174.
    Chou C-Y, Lee S-L, Lin J-C, Hsu C-M (2007) Effects of cross-channel extrusion on the microstructures and superplasticity of a Zn–22 wt.% Al eutectoid alloy. Scr Mater 57(10):972–975.  https://doi.org/10.1016/j.scriptamat.2007.04.029 Google Scholar
  175. 175.
    Rosochowski A, Olejnik L, Richert J, Rosochowska M, Richert M (2013) Equal channel angular pressing with converging billets—experiment. Mater Sci Eng A 560(0):358–364.  https://doi.org/10.1016/j.msea.2012.09.079 Google Scholar
  176. 176.
    Guo W, Wang Q, Ye B, Liu M, Peng T, Liu X, Zhou H (2012) Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting. Mater Sci Eng A 540:115–122Google Scholar
  177. 177.
    Rusz S, Malanik K, Dutkiewicz J, Cizek L, Skotnicova I, Hluchnik J (2009) Influence of change of direction of deformation at ECAP technology on achieved UFG in AlMn1Cu alloy. Journal of Achievements in Materials and Manufacturing Engineering 35(1):21–28Google Scholar
  178. 178.
    Mathieu J-P, Suwas S, Eberhardt A, Toth L, Moll P (2006) A new design for equal channel angular extrusion. J Mater Process Technol 173(1):29–33Google Scholar
  179. 179.
    Yamane T, Kondou R, Makabe C (2007) Grain refinement and strengthening of a cylindrical pure-aluminum specimen by using modified equal-channel angular pressing technique. In: Key Engineering Materials. Trans Tech Publ, pp 937–942Google Scholar
  180. 180.
    Lee HH, Yoon JI, Kim HS (2018) Single-roll angular-rolling: a new continuous severe plastic deformation process for metal sheets. Scr Mater 146:204–207.  https://doi.org/10.1016/j.scriptamat.2017.11.043 Google Scholar
  181. 181.
    Fadaei A, Farahafshan F, Sepahi-Boroujeni S (2017) Spiral equal channel angular extrusion (Sp-ECAE) as a modified ECAE process. Mater Des 113:361–368.  https://doi.org/10.1016/j.matdes.2016.10.021 Google Scholar
  182. 182.
    Wadsack R, Pippan R, Schedler B (2003) Structural refinement of chromium by severe plastic deformation. Fusion Engineering and Design 66-68:265–269.  https://doi.org/10.1016/S0920-3796(03)00136-4 Google Scholar
  183. 183.
    Tóth LS, Arzaghi M, Fundenberger JJ, Beausir B, Bouaziz O, Arruffat-Massion R (2009) Severe plastic deformation of metals by high-pressure tube twisting. Scr Mater 60(3):175–177.  https://doi.org/10.1016/j.scriptamat.2008.09.029 Google Scholar
  184. 184.
    Arzaghi M, Fundenberger J, Toth L, Arruffat R, Faure L, Beausir B, Sauvage X (2012) Microstructure, texture and mechanical properties of aluminum processed by high-pressure tube twisting. Acta Mater 60(11):4393–4408Google Scholar
  185. 185.
    Wang M, Shan A (2008) Severe plastic deformation introduced by rotation shear. J Mater Process Technol 202(1):549–552Google Scholar
  186. 186.
    Wang JT, Li Z, Wang J, Langdon TG (2012) Principles of severe plastic deformation using tube high-pressure shearing. Scr Mater 67(10):810–813Google Scholar
  187. 187.
    Harai Y, Ito Y, Horita Z (2008) High-pressure torsion using ring specimens. Scr Mater 58(6):469–472Google Scholar
  188. 188.
    Edalati K, Lee S, Horita Z (2012) Continuous high-pressure torsion using wires. J Mater Sci 47(1):473–478.  https://doi.org/10.1007/s10853-011-5822-z Google Scholar
  189. 189.
    Fujioka T, Horita Z (2009) Development of high-pressure sliding process for microstructural refinement of rectangular metallic sheets. Mater Trans 50(4):930Google Scholar
  190. 190.
    Bouaziz O, Estrin Y, Kim HS (2009) A new technique for severe plastic deformation: the cone–cone method. Adv Eng Mater 11(12):982–985Google Scholar
  191. 191.
    Um HY, Yoon EY, Lee DJ, Lee CS, Park LJ, Lee S, Kim HS (2014) Hollow cone high-pressure torsion: microstructure and tensile strength by unique severe plastic deformation. Scr Mater 71:41–44Google Scholar
  192. 192.
    Kume Y, Kobashi M, Kanetake N (2007) Homogeneity of grain refinement of aluminum alloy with compressive torsion processing. Adv Mater Res 26:107–110Google Scholar
  193. 193.
    Jahedi M, Paydar MH, Zheng S, Beyerlein IJ, Knezevic M (2014) Texture evolution and enhanced grain refinement under high-pressure-double-torsion. Mater Sci Eng A 611:29–36Google Scholar
  194. 194.
    Khoddam S (2016) A detailed model of high pressure torsion. Materials Science and Engineering: AGoogle Scholar
  195. 195.
    Khoddam S, Farhoumand A, Hodgson P (2011) Upper-bound analysis of axi-symmetric forward spiral extrusion. Mech Mater 43(11):684–692Google Scholar
  196. 196.
    Gurău G, Gurău C, Potecaşu O, Alexandru P, Bujoreanu L-G Novel high-speed high pressure torsion technology for obtaining Fe-Mn-Si-Cr shape memory alloy active elements. J Mater Eng Perform 1–7Google Scholar
  197. 197.
    Nakamura K, Neishi K, Kaneko K, Nakagaki M, Horita Z (2004) Development of severe torsion straining process for rapid continuous grain refinement. Mater Trans 45(12):3338–3342Google Scholar
  198. 198.
    Beygelzimer Y, Varyukhin V, Synkov S, Orlov D (2009) Useful properties of twist extrusion. Mater Sci Eng A 503(1):14–17Google Scholar
  199. 199.
    Asghar SA, Mousavi A, Bahador SR (2011) Investigation and numerical analysis of strain distribution in the twist extrusion of pure aluminum. JOM 63(2):69–76.  https://doi.org/10.1007/s11837-011-0032-3 Google Scholar
  200. 200.
    Beygelzimer Y, Orlov D, Varyukhin V (2002) A new severe plastic deformation method: twist extrusion. In: TMS Annual Meeting. pp 297–304Google Scholar
  201. 201.
    Beygelzimer Y, Varyukhin V, Orlov D, Efros B, Stolyarov V, Salimgareyev H (2002) Microstructural evolution of titanium under twist extrusion. In: TMS Annual Meeting. pp 43–46Google Scholar
  202. 202.
    Beygelzimer Y, Varyukhin V, Synkov S (2008) Shears, vortices, and mixing during twist extrusion. Int J Mater Form 1(SUPPL. 1):443–446.  https://doi.org/10.1007/s12289-008-0090-4 Google Scholar
  203. 203.
    Beygelzimer YY, Orlov DV (2002) Metal plasticity during the twist extrusion. Defect and Diffusion Forum 208–209Google Scholar
  204. 204.
    Kalahroudi FJ, Eviani AR, Jafarian HR, Amouri A, Gholizadeh R (2016) Inhomogeneity in strain, microstructure and mechanical properties of AA1050 alloy during twist extrusion. Mater Sci Eng A 667:349–357.  https://doi.org/10.1016/j.msea.2016.04.087 Google Scholar
  205. 205.
    Varyukhin V, Beygelzimer Y, Tkatch V, Maslov V, Synkov S, Synkov A, Nosenko V (2006) Consolidation of bulk nanomaterials by twist extrusion of powders. In: TMS Annual Meeting. pp 125–130Google Scholar
  206. 206.
    Beygelzimer Y, Prilepo D, Kulagin R, Grishaev V, Abramova O, Varyukhin V, Kulakov M (2011) Planar twist extrusion versus twist extrusion. J Mater Process Technol 211(3):522–529Google Scholar
  207. 207.
    Eivani A (2014) Towards bulk nanostructured materials in pure shear. Mater LettGoogle Scholar
  208. 208.
    Richert J, Richert M (1986) A new method for unlimited deformation of metals and alloys. Aluminium 62(8):604–607Google Scholar
  209. 209.
    Balasundar I, Raghu T (2013) On the die design for repetitive upsetting–extrusion (RUE) process. Int J Mater Form 6(2):289–301Google Scholar
  210. 210.
    Balasundar I, Ravi KR, Raghu T (2013) Strain softening in oxygen free high conductivity (OFHC) copper subjected to repetitive upsetting-extrusion (RUE) process. Mater Sci Eng A 583(0):114–122.  https://doi.org/10.1016/j.msea.2013.06.029 Google Scholar
  211. 211.
    Lianxi H, Yuping L, Erde W, Yang Y (2006) Ultrafine grained structure and mechanical properties of a LY12 Al alloy prepared by repetitive upsetting-extrusion. Mater Sci Eng A 422(1–2):327–332.  https://doi.org/10.1016/j.msea.2006.02.014 Google Scholar
  212. 212.
    Zaharia L, Comaneci R, Chelariu R, Luca D (2014) A new severe plastic deformation method by repetitive extrusion and upsetting. Mater Sci Eng A 595(0):135–142.  https://doi.org/10.1016/j.msea.2013.12.006 Google Scholar
  213. 213.
    Aizawa T, Tokumitu K (1999) Bulk mechanical alloying for productive processing of functional alloys. Mater Sci Forum 312:13–22Google Scholar
  214. 214.
    Pardis N, Chen C, Ebrahimi R, Toth L, Gu C, Beausir B, Kommel L (2015) Microstructure, texture and mechanical properties of cyclic expansion–extrusion deformed pure copper. Mater Sci Eng A 628:423–432Google Scholar
  215. 215.
    Pardis N, Talebanpour B, Ebrahimi R, Zomorodian S (2011) Cyclic expansion-extrusion (CEE): a modified counterpart of cyclic extrusion-compression (CEC). Mater Sci Eng A 528(25–26):7537–7540.  https://doi.org/10.1016/j.msea.2011.06.059 Google Scholar
  216. 216.
    Pardis N, Chen C, Shahbaz M, Ebrahimi R, Toth L (2014) Development of new routes of severe plastic deformation through cyclic expansion–extrusion process. Mater Sci Eng A 613:357–364Google Scholar
  217. 217.
    Beygelzimer Y, Reshetov A (2006) Twist extrusions plus spread extrusion = spatial uniformity ultrafine grained materials IV 504:119–124Google Scholar
  218. 218.
    Ebrahimi M, Gholipour H, Djavanroodi F (2016) A study on the capability of equal channel forward extrusion process. Mater Sci Eng A 650:1–7Google Scholar
  219. 219.
    Zaharia L, Chelariu R, Comaneci R (2012) Multiple direct extrusion: a new technique in grain refinement. Mater Sci Eng A 550(0):293–299.  https://doi.org/10.1016/j.msea.2012.04.074 Google Scholar
  220. 220.
    Muralidharan G, Verlinden B (2015) AccumEx—a new SPD technique for fabricating lamellar materials. Acta Phys Pol A 128(4):523–526Google Scholar
  221. 221.
    Wang Q, Chen Y, Lin J, Zhang L, Zhai C (2007) Microstructure and properties of magnesium alloy processed by a new severe plastic deformation method. Mater Lett 61(23):4599–4602Google Scholar
  222. 222.
    Fatemi-Varzaneh S, Zarei-Hanzaki A (2009) Accumulative back extrusion (ABE) processing as a novel bulk deformation method. Mater Sci Eng A 504(1):104–106Google Scholar
  223. 223.
    Alihosseini H, Asle Zaeem M, Dehghani K (2012) A cyclic forward–backward extrusion process as a novel severe plastic deformation for production of ultrafine grains materials. Mater Lett 68(0):204–208.  https://doi.org/10.1016/j.matlet.2011.10.037 Google Scholar
  224. 224.
    Wang C, Li F, Li Q, Wang L (2012) Numerical and experimental studies of pure copper processed by a new severe plastic deformation method. Mater Sci Eng A 548(0):19–26.  https://doi.org/10.1016/j.msea.2012.03.055 Google Scholar
  225. 225.
    Beygelzimer Y, Kulagin R, Latypov MI, Varyukhin V, Kim HS (2015) Off-axis twist extrusion for uniform processing of round bars. Met Mater Int 21(4):734–740Google Scholar
  226. 226.
    Babaei A, Mashhadi M, Jafarzadeh H (2014) Tube cyclic extrusion-compression (TCEC) as a novel severe plastic deformation method for cylindrical tubes. Mater Sci Eng A 598:1–6Google Scholar
  227. 227.
    Neugebauer R, Kolbe M, Glass R (2001) New warm forming processes to produce hollow shafts. J Mater Process Technol 119(1):277–282Google Scholar
  228. 228.
    Yu J, Zhang Z, Wang Q, Hao H, Cui J, Li L (2018) Rotary extrusion as a novel severe plastic deformation method for cylindrical tubes. Mater Lett 215:195–199.  https://doi.org/10.1016/j.matlet.2017.12.048 Google Scholar
  229. 229.
    Vu VQ, Beygelzimer Y, Toth LS, Fundenberger J-J, Kulagin R, Chen C (2018) The plastic flow machining: a new SPD process for producing metal sheets with gradient structures. Mater Charact 138:208–214.  https://doi.org/10.1016/j.matchar.2018.02.013 Google Scholar
  230. 230.
    Ghosh AK (1988) Method for producing a fine grain aluminum alloy using three axes deformation. United States Patent,Google Scholar
  231. 231.
    Rosochowski A (2004) Processing metals by severe plastic deformation. Solid State Phenom 101:13–22Google Scholar
  232. 232.
    Wadsack R, Pippan R, Schedler B (2002) Development of microstructure and thermal stability of nano-structured chromium processed by severe plastic deformation. Nanomaterials by Severe Plastic Deformation 654–659Google Scholar
  233. 233.
    Valiakhmetov OR, Galeev RM, Salishchev GA (1990) Mechanical properties of the VT8 titanium alloy with a submicrocrystalline structure. Fiz Met Metalloved 10 (10)Google Scholar
  234. 234.
    Salishchev G, Zaripova R, Galeev R, Valiakhmetov O (1995) Nanocrystalline structure formation during severe plastic deformation in metals and their deformation behaviour. Nanostruct Mater 6(5):913–916.  https://doi.org/10.1016/0965-9773(95)00208-1 Google Scholar
  235. 235.
    Mulyukov RR, Imayev RM, Nazarov AA (2008) Production, properties and application prospects of bulk nanostructured materials. J Mater Sci 43(23–24):7257–7263.  https://doi.org/10.1007/s10853-008-2777-9 Google Scholar
  236. 236.
    Shin DH, Park J-J, Kim Y-S, Park K-T (2002) Constrained groove pressing and its application to grain refinement of aluminum. Mater Sci Eng A 328(1–2):98–103.  https://doi.org/10.1016/S0921-5093(01)01665-3 Google Scholar
  237. 237.
    Yoon SC, Krishnaiah A, Chakkingal U, Kim HS (2008) Severe plastic deformation and strain localization in groove pressing. Comput Mater Sci 43(4):641–645Google Scholar
  238. 238.
    Lee JW, Park JJ (2002) Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement. J Mater Process Technol 130–131:208–213.  https://doi.org/10.1016/S0924-0136(02)00722-7 Google Scholar
  239. 239.
    Zhao X, J-f W, T-f J (2007) Gray cast iron with directional graphite flakes produced by cylinder covered compression process. J Iron Steel Res Int 14(5):52–55.  https://doi.org/10.1016/S1006-706X(07)60074-0 Google Scholar
  240. 240.
    Hua L, Han X (2009) 3D FE modeling simulation of cold rotary forging of a cylinder workpiece. Mater Des 30(6):2133–2142Google Scholar
  241. 241.
    Alexander D (2007) New methods for severe plastic deformation processing. J Mater Eng Perform 16(3):360–374.  https://doi.org/10.1007/s11665-007-9054-y Google Scholar
  242. 242.
    Babaei A, Faraji G, Mashhadi M, Hamdi M (2012) Repetitive forging (RF) using inclined punches as a new bulk severe plastic deformation method. Mater Sci Eng A 558:150–157Google Scholar
  243. 243.
    Wang QJ, Zhang PP, Liu CR (2012) Principle of the continuous variable cross-section recycled extrusion (CVCE) process. Adv Mater Res 418:1400–1404Google Scholar
  244. 244.
    Kuziak R, Zalecki W, Węglarczyk S, Pietrzyk M (2005) New possibilities of achieving ultrafine grained microstructure in metals and alloys employing MaxStrain technology. In: Solid State Phenomena, Trans Tech Publ, pp 43–48Google Scholar
  245. 245.
    Montazeri-Pour M, Parsa HM, Mirzadeh H (2015) Multi-axial incremental forging and shearing as a new severe plastic deformation processing technique. Adv Eng Mater: n/a-n/a. doi: https://doi.org/10.1002/adem.201400467
  246. 246.
    Kwapisz M (2015) Analysis of the shape of stamp on the distribution of deformation in the process of alternate pressing and multiaxial compression. In: Solid State Phenomena, Trans Tech Publ, pp 963–968Google Scholar
  247. 247.
    Sepahi-Boroujeni S, Sepahi-Boroujeni A (2016) Improvements in microstructure and mechanical properties of AZ80 magnesium alloy by means of an efficient, novel severe plastic deformation process. J Manuf Process 24:71–77Google Scholar
  248. 248.
    Kamikawa N, Furuhara T (2013) Accumulative channel-die compression bonding (ACCB): a new severe plastic deformation process to produce bulk nanostructured metals. J Mater Process Technol 213(8):1412–1418Google Scholar
  249. 249.
    Khodabakhshi F, Gerlich AP (2018) Accumulative fold-forging (AFF) as a novel severe plastic deformation process to fabricate a high strength ultra-fine grained layered aluminum alloy structure. Mater Charact 136:229–239.  https://doi.org/10.1016/j.matchar.2017.12.023 Google Scholar
  250. 250.
    Mirsepasi A, Nili-Ahmadabadi M, Habibi-Parsa M, Ghasemi-Nanesa H, Dizaji AF (2012) Microstructure and mechanical behavior of martensitic steel severely deformed by the novel technique of repetitive corrugation and straightening by rolling. Mater Sci Eng A 551:32–39Google Scholar
  251. 251.
    Takayama Y, Uchiyama Y, Arakawa T, Kobayashi M, Kato H (2007) Crystallographic orientation distribution control by means of continuous cyclic bending in a pure aluminum sheet. Mater Trans 48(8):1992–1997Google Scholar
  252. 252.
    Cui Q, Ohori K (2000) Grain refinement of high purity aluminium by asymmetric rolling. Mater Sci Technol 16(10):1095–1101Google Scholar
  253. 253.
    Chen YL, Shan AD, Jiang JH, Ding Y (2008) Characterizing the shear deformation during asymmetric rolling. In: Materials Science Forum, Trans Tech Publ, pp 327–332Google Scholar
  254. 254.
    Xu G, Cao X, Zhang T, Duan Y, Peng X, Deng Y, Yin Z (2016) Achieving high strain rate superplasticity of an Al-Mg-Sc-Zr alloy by a new asymmetrical rolling technology. Mater Sci Eng A 672:98–107Google Scholar
  255. 255.
    Mohebbi M, Akbarzadeh A (2010) A novel spin-bonding process for manufacturing multilayered clad tubes. J Mater Process Technol 210(3):510–517Google Scholar
  256. 256.
    Mani B, Jahedi M, Paydar MH (2011) A modification on ECAP process by incorporating torsional deformation. Mater Sci Eng A 528(12):4159–4165Google Scholar
  257. 257.
    Kocich R, Greger M, Kursa M, Szurman I, Macháčková A (2010) Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD. Mater Sci Eng A 527(23):6386–6392Google Scholar
  258. 258.
    Wang XX, Xue KM, Li P, Wu ZL, Li Q (2010) Equal channel angular pressing and torsion of pure Al powder in tubes. Adv Mater Res 97:1109–1115Google Scholar
  259. 259.
    Kocich R, Macháčková A, Kunčická L (2014) Twist channel multi-angular pressing (TCMAP) as a new SPD process: numerical and experimental study. Mater Sci Eng A 612:445–455Google Scholar
  260. 260.
    Shamsborhan M, Shokuhfar A (2013) A planar twist channel angular extrusion (PTCAE) as a novel severe plastic deformation method based on equal channel angular extrusion (ECAE) method. Proceed Instit Mech Eng Part C: J Mech Eng Sci 0954406213515645Google Scholar
  261. 261.
    Bisadi H, Mohamadi M, Miyanaji H, Abdoli M (2013) A modification on ECAP process by incorporating twist channel. J Mater Eng Perform 22(3):875–881.  https://doi.org/10.1007/s11665-012-0323-z Google Scholar
  262. 262.
    Sepahi-Boroujeni S, Fereshteh-Saniee F (2015) Expansion equal channel angular extrusion, as a novel severe plastic deformation technique. J Mater Sci 50(11):3908–3919Google Scholar
  263. 263.
    Ivanisenko Y, Kulagin R, Fedorov V, Mazilkin A, Scherer T, Baretzky B, Hahn H (2016) High pressure torsion extrusion as a new severe plastic deformation process. Mater Sci Eng A 664:247–256Google Scholar
  264. 264.
    Korbel A, Bochniak W (2004) Refinement and control of the metal structure elements by plastic deformation. Scr Mater 51(8):755–759Google Scholar
  265. 265.
    Zhang Z, Shao S, K-i M, Kong X, Li Y (2016) Evolution of microstructure and mechanical properties of Al 6061 alloy tube in cyclic rotating bending process. Mater Sci Eng A 676:80–87Google Scholar
  266. 266.
    Lu L, Liu C, Zhao J, Zeng W, Wang Z (2014) Modification of grain refinement and texture in AZ31 Mg alloy by a new plastic deformation method. J Alloys CompdGoogle Scholar
  267. 267.
    Torabzadeh H, Faraji G, Zalnezhad E (2016) Cyclic flaring and sinking (CFS) as a new severe plastic deformation method for thin-walled cylindrical tubes. Trans Indian Inst Metals 69(6):1217–1222Google Scholar
  268. 268.
    Ensafi M, Faraji G, Abdolvand H (2017) Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals. Mater Lett 197:12–16.  https://doi.org/10.1016/j.matlet.2017.03.142 Google Scholar
  269. 269.
    Pourbashiri M, Sedighi M, Poletti C, Sommitsch C (2017) Enhancing mechanical properties of wires by a novel continuous severe plastic deformation method. Int J Mater Res 108(9):741–749Google Scholar
  270. 270.
    Bagherpour E, Komada N, Fujiwara H, Miyamoto H (2015) Deformation behavior in nonlinear rotary extrusion (NRE) as a new severe plastic deformation. The Proceedings of the 66th Japanese Joint Conference for the Technology of Plasticity: 193-194Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, School of EngineeringShiraz UniversityShirazIran
  2. 2.Department of Materials Science and Engineering, Faculty of EngineeringShahid Chamran University of AhvazAhvazIran

Personalised recommendations