Non-conventional approach in single-sided lapping process: kinematic analysis and parameters optimization

  • Adam Barylski
  • Norbert PiotrowskiEmail author
Open Access


The lapping process is strongly affected by a number of input parameters. One of the fundamental mechanical processes in lapping is the abrasive effect of particles. In order to examine the influence of the kinematic parameters on the lapping uniformity of unconventional single-sided machine, numerical simulations of particles sliding trajectories are performed. Changing the kinematic parameters, e.g., rotational velocities or position of the conditioning rings together with the workpieces can be used for correcting the profile of an active surface of the lap. This paper provides a basic guide to the kinematic parameter settings of single-sided lapping process. Furthermore, an unconventional single-sided lapping system, where a conditioning ring performs additional motion during the machining, is described. Simulation results show that the rotational speed ratio of the conditioning ring to the lapping plate k1 and the period ratio of the reciprocating motion to the lapping plate rotary motion k2 represent the relationships among the three basic motions of unconventional lapping systems and are major factors affecting trajectory distribution. Material removal rate and trajectory density parameter are proposed to optimize the kinematic parameters for better uniformity of lapping plate wear. The preferred kinematic parameter values for single-sided lapping system with reciprocating motions and the assumed size of the machine are k1 = 0, 78 and k2 = 2. The general results were validated on a specially designed test stand.


Abrasive machining Single-sided lapping Particle trajectory Kinematic optimization 



  1. 1.
    Uhlmann E, Ardelt T, Spur G (1999) Influence of kinematics on the face grinding process on lapping machines. Ann CIRP 48(1):281–284CrossRefGoogle Scholar
  2. 2.
    Deshpande LS, Raman S, Sunanta O, Agbaraji C (2008) Observations in the flat lapping of stainless steel and bronze. Wear 265(1–2):105–116CrossRefGoogle Scholar
  3. 3.
    Belkhir N, Bouzid D, Herold V (2009) Surface behavior during abrasive grain action in the glass lapping process. Appl Surf Sci 255(18):7951–7958CrossRefGoogle Scholar
  4. 4.
    Liu JH, Pei ZJ, Fisher GR (2007) Grinding wheels for manufacturing of silicon wafers: a literature review. Int J Mach Tools Manuf 47(1):1–13CrossRefGoogle Scholar
  5. 5.
    Liu H-K, Chen C-CA, Chen W-C (2017) Diamond lapping of sapphire wafer with addition of graphene in slurry. Procedia Eng 184:156–162CrossRefGoogle Scholar
  6. 6.
    Zong WJ, Li D, Cheng K, Sun T, Wang HX, Liang YC (2005) The material removal mechanism in mechanical lapping of diamond cutting tools. Int J Mach Tools Manuf 45(7–8):783–788CrossRefGoogle Scholar
  7. 7.
    Barylski A (1992) Podstawy docierania jednotarczowego powierzchni płaskich. Zeszyty Naukowe Politechniki Gdańskiej, Mechanika 67, GdańskGoogle Scholar
  8. 8.
    Klocke F (2009) Manufacturing processes 2: grinding, honing, lapping. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Ardelt T (2001) Verfahrensvergleich Planschleifen mit Planetenkinematik – Planparallelläppen. IDR 35(3):214–224Google Scholar
  10. 10.
    Neauport J, Destribats J, Maunier C, Ambard C, Cormont P et al (2010) Loose abrasive slurries for optical glass lapping. J Opt A Purek Appl Opt 49:5736–5745Google Scholar
  11. 11.
    Heisel U, Jakob P (2012) Research on the workpiece kinematics in face lapping with friction drive. Adv Mater Res 565:318–323CrossRefGoogle Scholar
  12. 12.
    Marinescu ID, Uhlmann E, Doi T (2007) Handbook of lapping and polishing. Taylor & Francis Publishing House, New YorkGoogle Scholar
  13. 13.
    Barylski A, Deja M (2002) Calculation of flatness errors formed on the tool during finishing machining by lapping. Int J Appl Mech Eng 7:291–296Google Scholar
  14. 14.
    Ishikawa K, Ichikawa K, Suwabe H (1988) A basic study on corrective techniques to recovering accuracy of deteriorated lapping plate. Int J Jpn Soc Precis Eng (3):234–236Google Scholar
  15. 15.
    Lu L Y, Fang CF, Shen JY, Lu J, Xu XP (2014) Analysis of path distribution in lapping and polishing with single fixed abrasive. Key Eng Mater 589–590:475–479Google Scholar
  16. 16.
    Ichikawa S, Ona H, Yoshimoto I, Kobayashi A (1993) Proposal of new lapping method for ceramic balls. CIRP Ann 42(1):421–424CrossRefGoogle Scholar
  17. 17.
    Chang YP, Hashimura MM, Dornfeld DA (2000) An investigation of material removal mechanisms in lapping with grain size transition. J Manuf Sci Eng 122(3):413–419CrossRefGoogle Scholar
  18. 18.
    Kling J, Matthias E (1986) Workpiece material removal and lapping wheel wear in plane and plane-parallel lapping. CIRP Ann 35(1):219–222CrossRefGoogle Scholar
  19. 19.
    Spur G, Eichhorn H (1997) Kinematisches Simulationsmodell des Läppscheibenverschleißes. IDR 2:169–178Google Scholar
  20. 20.
    Simpfendorfer D (1988) Entwicklung und Verifizierung eines Prozeßmodells beim Planläppen mit Zwangsführung. Produktionstechnik – Berlin 71. Hanser-Verlag, MünchenGoogle Scholar
  21. 21.
    Hu Z, Fang C, Deng W, Zhao Z, Lin Y, Xu X (2017) Speed ratio optimization for ceramic lapping with fixed diamond pellets. Int J Adv Manuf Technol 90(9–12):3159–3169CrossRefGoogle Scholar
  22. 22.
    Satake U, Enomoto T, Fujii K, Hirose K (2016) Optimization method for double-sided polishing process based on kinematical analysis. Procedia CIRP 41L:870–874CrossRefGoogle Scholar
  23. 23.
    Mahamad Sahab AR, Saad NH, Rashid AA, Noriah YF, Said NM, Zubair AF, Jaffar A (2013) Effect of double sided process parameters in lapping silicon wafer. Appl Mech Mater 393:259–265CrossRefGoogle Scholar
  24. 24.
    Fiocchi AA, Fortulan CA, Sanchez LEA (2015) Ultra-precision face grinding with constant pressure, lapping kinematics, and SiC grinding wheels dressed with overlap factor. Int J Adv Manuf Technol 79(9–12):1531–1543CrossRefGoogle Scholar
  25. 25.
    Pei ZJ, Fisher GR, Bhagavat M, Kassir S (2005) A grinding-based manufacturing method for silicon wafers: an experimental investigation. Int J Mach Tools Manuf 45(10):1140–1151CrossRefGoogle Scholar
  26. 26.
    Qin N, Guo DM, Kang RK, Huo FW (2009) Effect of conditioning parameters on surface non-uniformity of polishing pad in chemical mechanical planarization. Key Eng Mater 389–390(1):498–503Google Scholar
  27. 27.
    Li ZC, Baisie EA, Zhang XH (2012) Diamond disc pad conditioning in chemical mechanical planarization (CMP): a surface element method to predict pad surface shape. Precis Eng 36(2):356–363CrossRefGoogle Scholar
  28. 28.
    Hocheng H, Tsai HY, Tsai MS (2000) Effects of kinematic variables on nonuniformity in chemical mechanical planarization. Int J Mach Tools Manuf 40(11):1651–1669CrossRefGoogle Scholar
  29. 29.
    Lee H, Lee S (2017) Investigation of pad wear in CMP with swing-arm conditioning and uniformity of material removal. Precis Eng 49:85–91CrossRefGoogle Scholar
  30. 30.
    Nguyen NY, Zhong ZW, Tian Y (2015) An analytical investigation of pad wear caused by the conditioner in fixed abrasive chemical–mechanical polishing. Int J Adv Manuf Technol 77(5-8):897–905CrossRefGoogle Scholar
  31. 31.
    Barylski A, Piotrowski N (2014) Koncepcje niekonwencjonalnych układów kinematycznych docierania jednotarczowego z wykorzystaniem robota. Mechanik 78(8–9):36–33Google Scholar
  32. 32.
    Barylski A, Piotrowski N (2016) Multi-criteria robot selection problem for an automated single-sided lapping system. Mechatronics: Ideas, Challenges, Solutions and Applications Advances in Intelligent Systems and Computing 414:1–13Google Scholar
  33. 33.
    Evans J, Paul E, Dornfeld D, Lucca D, Byrne G, Tricard M, Klocke F, Dambon O, Mullany B (2003) Material removal mechanisms in lapping and polishing. STC “G”? Keynote. CIRP Ann 52(2):611–633CrossRefGoogle Scholar
  34. 34.
    Tseng WT (1999) Comparative study on the roles of velocity in the material removal rate during chemical mechanical polishing. J Electrochem Soc 146(5):1952–1959CrossRefGoogle Scholar
  35. 35.
    Wen D, Qi H, Ma L, Lu C, Li G (2016) Kinematics and trajectory analysis of the fixed abrasive lapping process in machining of interdigitated micro-channels on bipolar plates. Precis Eng 44:192–202CrossRefGoogle Scholar
  36. 36.
    Zhao D, Wang T, He Y, Lu X (2013) Kinematic optimization for chemical mechanical polishing based on statistical analysis of particle trajectories. IEEE Trans Semicond Manuf 26(4):556–563CrossRefGoogle Scholar
  37. 37.
    Li X (2010) Optimize S-Curve Velocity for Motion Control. Far East Journal of Applied Mathematics (48): 1-15Google Scholar
  38. 38.
    Nguyen KD, Ng T-C, Chen I-M (2008) On algorithms for planning S-curve motion profiles. Int J Adv Robot Syst 5(1):99–106CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Gdansk University of TechnologyGdanskPoland

Personalised recommendations