Advertisement

A numerical investigation on the local mechanical behavior of a 316-L part during and after an EDM basic electrical discharge

  • Adnene Tlili
  • Farhat Ghanem
ORIGINAL ARTICLE
  • 8 Downloads

Abstract

This study proposes a novel numerical approach to elucidate the mechanical behavior of the EDMed layer during an electrical discharge and enhance the numerical prediction of the EDM-induced residual stresses and work hardening, through advances at the levels of models, loads, and boundary conditions. In this work, a single-pulse discharge was simulated using finite element method carried out in ABAQUS/Explicit code. A fully coupled thermomechanical consistent model was developed based on a hydrodynamic Gruneisen-type behavior for the hydrostatic part of the stress, coupled with a Johnson-Cook plasticity model that takes into account a strain-rate-dependent stress in the range of a shockwave condition. A time-dependent heat source and pressure pulse are concurrently applied on the workpiece-loaded boundary. Numerical results highlighted relevant findings, especially the pre-eminence of the uniform distribution of the heat flux to predict the in-depth residual stress profile and the evident effect of the plasma-induced pressure on the work hardening and less on the residual stresses.

Keywords

EDM Numerical simulation Residual stresses Electrical discharge Work hardening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McGeough JA, Rasmussen H (1982) A macroscopic model of electro-discharge machining. Int J Mach Tool D R 22:333–339.  https://doi.org/10.1016/0020-7357(82)90010-5 CrossRefGoogle Scholar
  2. 2.
    Rizvi SAH, Agarwal S (2016) An investigation on surface integrity in EDM process with a copper tungsten electrode. Proc CIRP 42:612–617.  https://doi.org/10.1016/j.procir.2016.02.254 CrossRefGoogle Scholar
  3. 3.
    Ghanem F, Fredj NB, Sidhom H, Braham C (2011) Effects of finishing processes on the fatigue life improvements of electro-machined surfaces of tool steel. Int J Adv Manuf Technol 52:583–595.  https://doi.org/10.1007/s00170-010-2751-y CrossRefGoogle Scholar
  4. 4.
    Ghanem F, Sidhom H, Braham C, Fitzpatrick ME (2002) Effect of near-surface residual stress and microstructure modification from machining on the fatigue endurance of a tool steel. J Mater Eng Perform 6:631–639.  https://doi.org/10.1361/105994902770343629 CrossRefGoogle Scholar
  5. 5.
    Ekmekci B (2007) Residual stresses and white layer in electric discharge machining (EDM). Appl Surf Sci 253(23):9234–9240.  https://doi.org/10.1016/j.apsusc.2007.05.078 CrossRefGoogle Scholar
  6. 6.
    Yadav V, Jain VK, Dixit PM (2002) Thermal stresses due to electrical discharge machining. Int J Mach Tool Manu 42:877–888CrossRefGoogle Scholar
  7. 7.
    Meenakshi SM, Swee-Hock Y (2005) Process simulation and residual stress estimation of micro-electrodischarge machining using finite element method. Jpn J Appl Phys 44(7R):5254–5263.  https://doi.org/10.1143/JJAP.44.5254 Google Scholar
  8. 8.
    Das S, Klotz M, Klocke F (2003) EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses. J Mater Process Technol 142:434–451.  https://doi.org/10.1016/S0924-0136(03)00624-1 CrossRefGoogle Scholar
  9. 9.
    Rebelo JC, Kornmeier M, Batista AC, Dias AM (2002) Residual stress after EDM-FEM study and measurement results. Mater Sci Forum 404-407:159–164.  https://doi.org/10.4028/www.scientific.net/MSF.404-407.159 CrossRefGoogle Scholar
  10. 10.
    Ekmekci B (2002) Theoretical and experimental investigation of residual stresses in electrical discharge machining. Ph.D. thesis, The Middle East Technical UniversityGoogle Scholar
  11. 11.
    Ekmekci B, Tekkaya AE, Erden A (2006) A semi-empirical approach for residual stresses in electric discharge machining (EDM). Int J Mach Tools Manuf 46:858–868.  https://doi.org/10.1016/j.ijmachtools.2005.07.020 CrossRefGoogle Scholar
  12. 12.
    Saeki T, Kunieda M, Ueki M, Satoh Y, Division AHT, Division AFE (1996) influence of joule heating on EDM processes of high-electric-resistivity materials. Paper presented at the ASME international mechanical congress and exposition, AtlantaGoogle Scholar
  13. 13.
    Pradhan MK (2010) Modeling and simulation of thermal stress in electrical discharge machining process. In: Proc. of the 4th international conference on advances in mechanical engineering, September 23–25, India, 2010Google Scholar
  14. 14.
    Ekmekci B, Elkoca O, Erman Tekkaya A, Erden A (2005) Residual stress state and hardness depth in electric discharge machining: de-ionized water as dielectric liquid. Mach Sci Technol 9(1):39–61.  https://doi.org/10.1081/MST-200051244 CrossRefGoogle Scholar
  15. 15.
    Shabgard M, Seydi S, Seyedzavvar M (2015) Novel approach towards finite element analysis of residual stresses in electrical discharge machining process. Int J Adv Manuf Technol 82(9–12):1805–1814.  https://doi.org/10.1007/s00170-015-7510-7 Google Scholar
  16. 16.
    Srinivasa Rao P, Ramji K, Satyanarayana B (2016) Effect of wire EDM conditions on generation of residual stresses in machining of aluminum 2014 T6 alloy. AEJ 55(2):1077–1084.  https://doi.org/10.1016/j.aej.2016.03.014 Google Scholar
  17. 17.
    Liu JF, Guo YB (2016) Residual stress modeling in electric discharge machining (EDM) by incorporating massive random discharges. Proc CIRP 45:299–302.  https://doi.org/10.1016/j.procir.2016.02.060 CrossRefGoogle Scholar
  18. 18.
    Mohanty CP, Sahu J, Mahapatra SS (2013) Thermal-structural analysis of electrical discharge machining process. Procedia Engineer 51:508–513.  https://doi.org/10.1016/j.proeng.2013.01.072 CrossRefGoogle Scholar
  19. 19.
    Soni PK and Gholley R (2007) Study and analysis of residual stresses in electro-discharge machining (EDM). Btech thesisGoogle Scholar
  20. 20.
    Pérez R, Carron J, Rappaz M, Wälder G, Revaz B, Flükiger R (2007) Measurement and metallurgical modeling of the thermal impact of EDM discharges on steel. Paper presented at the 15th international symposium on electromachining, ISEM XV, pp 17–22Google Scholar
  21. 21.
    Ghanem F, Braham C, Sidhom H (2003) Influence of steel type on electrical discharge machined surface integrity. J Mater Process Technol 142:163–173.  https://doi.org/10.1016/S0924-0136(03)00572-7 CrossRefGoogle Scholar
  22. 22.
    Salah Nizar B, Ghanem F, Atig Kaïs B (2008) Thermal and mechanical numerical modelling of electric discharge machining process. Commun Numer Methods Eng 24(12):2021–2034.  https://doi.org/10.1002/cnm.1091 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Guo J, Zhang G, Huang Y, Ming W, Liu M, Huang H (2014) Investigation of the removing process of cathode material in micro-EDM using an atomistic-continuum model. Appl Surf Sci 315:323–336.  https://doi.org/10.1016/j.apsusc.2014.07.130 CrossRefGoogle Scholar
  24. 24.
    Yang X, Han X, Zhou F, Kunieda M (2013) Molecular dynamics simulation of residual stress generated in EDM. Proc CIRP 6:432–437.  https://doi.org/10.1016/j.procir.2013.03.037 CrossRefGoogle Scholar
  25. 25.
    Yang X, Guo J, Chen X, Kunieda M (2011) Molecular dynamics simulation of the material removal mechanism in micro-EDM. Precis Eng 35(1):51–57.  https://doi.org/10.1016/j.precisioneng.2010.09.005 CrossRefGoogle Scholar
  26. 26.
    Zhang G, Guo J, Ming W, Huang Y, Shao X, Zhang Z (2014) Study of the machining process of Nano-electrical discharge machining based on combined atomistic-continuum modeling method. Appl Surf Sci 290:359–367.  https://doi.org/10.1016/j.apsusc.2013.11.084 CrossRefGoogle Scholar
  27. 27.
    Singh A, Ghosh A (1999) A thermo-electric model of material removal during electric discharge machining. Int J Mach Tools Manuf 39(4):669–682.  https://doi.org/10.1016/s0890-6955(98)00047-9 CrossRefGoogle Scholar
  28. 28.
    Yue X, Yang X (2017) Molecular dynamics simulation of single pulse discharge process: clarifying the function of pressure generated inside the melting area in EDM. Mol Simul 43(12):935–944.  https://doi.org/10.1080/08927022.2017.1306649 CrossRefGoogle Scholar
  29. 29.
    Yue X, Yang X (2016) Study on the distribution of removal material of EDM in deionized water and gas with molecular dynamics simulation. Proc CIRP 42:691–696.  https://doi.org/10.1016/j.procir.2016.02.303 CrossRefGoogle Scholar
  30. 30.
    Hayakawa S, Kusafuka Y, Itoigawa F, Nakamura T (2016) Observation of material removal from discharge spot in electrical discharge machining. Proc CIRP 42:12–17.  https://doi.org/10.1016/j.procir.2016.02.175 CrossRefGoogle Scholar
  31. 31.
    Peyre P, Chaieb I, Braham C (2007) FEM calculation of residual stresses induced by laser shock processing in stainless steels, modelling Simul. Mater Sci Eng 15:205–221.  https://doi.org/10.1088/0965-0393/15/3/002 Google Scholar
  32. 32.
    Song H (2010) Analyse expérimentale et numérique de la distribution des contraintes résiduelles induites par choc-laser dans les alliages d’aluminium. Sciences de l'ingénieur [physics]. Arts et Métiers ParisTech. Français. <NNT: 2010ENAM0002>. <pastel-00005901>Google Scholar
  33. 33.
    Belassel M (1994) Etude de la distribution des contraintes d’ordre I et II par diffraction des rayons X dans un acier perlitique, Thèse, École Nationale Supérieure d’Arts et Métiers de ParisGoogle Scholar
  34. 34.
    Sollier A (2002) Etude des plasmas générés par interaction laser-matière en régime confiné. Application au traitement des matériaux par choc laser. Thesis prepared within the University of Versailles Saint Quentin en Yvelines. Url: https://tel.archives-ouvertes.fr/tel-00089243
  35. 35.
    Zhang Y, Liu Y, Shen Y, Ji R, Li Z, Zheng C (2014) Investigation on the influence of the dielectrics on the material removal characteristics of EDM. J Mater Process Technol 214(5):1052–1061.  https://doi.org/10.1016/j.jmatprotec.2013.12.012 CrossRefGoogle Scholar
  36. 36.
    Soldera F, Lasagni A, Mücklich F, Kaiser T, Hrastnik K (2005) Determination of the cathode erosion and temperature for the phases of high voltage discharges using FEM simulations. Comput Mater Sci 32:123–139.  https://doi.org/10.1016/j.commatsci.2004.06.004 CrossRefGoogle Scholar
  37. 37.
    Daalder JE (1978) A cathode spot model and its energy balance for metal vapour arcs. J Phys D Appl Phys 11(12):1667–1682CrossRefGoogle Scholar
  38. 38.
    Kitamura T, Kunieda M (2014) Clarification of EDM gap phenomena using transparent electrodes. CIRP Ann 63(1):213–216.  https://doi.org/10.1016/j.cirp.2014.03.059 CrossRefGoogle Scholar
  39. 39.
    Rich JA (1961) Resistance heating in the arc cathode spot zone. J Appl Phys 32(6):1023–1031.  https://doi.org/10.1063/1.1736153 CrossRefGoogle Scholar
  40. 40.
    Maradia U, Hollenstein C, Wegener K (2015) Temporal characteristics of the pulsed electric discharges in small gaps filled with hydrocarbon oil. J Phys D Appl Phys 48(5):055202.  https://doi.org/10.1088/0022-3727/48/5/055202 CrossRefGoogle Scholar
  41. 41.
    Yeo SH, Kurnia W, Tan PC (2008) Critical assessment and numerical comparison of electro-thermal models in EDM. J Mater Process Technol 203(1–3):241–251.  https://doi.org/10.1016/j.jmatprotec.2007.10.026 CrossRefGoogle Scholar
  42. 42.
    Tlili A, Ghanem F, Salah Nizar B (2015) A contribution in EDM simulation field. Int J Adv Manuf Technol 79(5–8):921–935.  https://doi.org/10.1007/s00170-015-6880-1 CrossRefGoogle Scholar
  43. 43.
    Assarzadeh S, Ghoreishi M (2016) Electro-thermal-based finite element simulation and experimental validation of material removal in static gap single-spark die-sinking electro-discharge machining process. Proc Inst Mech Eng B J Eng Manuf 231(1):28–47.  https://doi.org/10.1177/0954405415572661 CrossRefGoogle Scholar
  44. 44.
    Guo YB, Klink A, Klocke F (2013) Multiscale modeling of sinking-EDM with Gaussian heat flux via user subroutine. Proc CIRP 6:438–443.  https://doi.org/10.1016/j.procir.2013.03.047 CrossRefGoogle Scholar
  45. 45.
    Allen P, Chen X (2007) Process simulation of micro electro-discharge machining on molybdenum. J Mater Process Technol 186:346–355.  https://doi.org/10.1016/j.jmatprotec.2007.01.009 CrossRefGoogle Scholar
  46. 46.
    Kansal HK, Singh S, Kumar P (2008) Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Math Comput Model 47(11–12):1217–1237.  https://doi.org/10.1016/j.mcm.2007.05.016 CrossRefzbMATHGoogle Scholar
  47. 47.
    Joshi SN, Pande SS (2010) Thermo-physical modeling of die-sinking EDM process. J Manuf Process 12(1):45–56.  https://doi.org/10.1016/j.jmapro.2010.02.001 CrossRefGoogle Scholar
  48. 48.
    Tang J, Yang X (2016) A thermo-hydraulic modeling for the formation process of the discharge crater in EDM. Proc CIRP 42:685–690.  https://doi.org/10.1016/j.procir.2016.02.302 CrossRefGoogle Scholar
  49. 49.
    Zhang Y, Liu Y, Shen Y, Li Z, Ji R, Cai B (2014) A novel method of determining energy distribution and plasma diameter of EDM. Int J Heat Mass Transf 75:425–432.  https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.082 CrossRefGoogle Scholar
  50. 50.
    Kojima A, Natsu W, Kunieda M (2008) Spectroscopic measurement of arc plasma diameter in EDM. CIRP Ann 57(1):203–207.  https://doi.org/10.1016/j.cirp.2008.03.097 CrossRefGoogle Scholar
  51. 51.
    Escobar AM, De Lange DF, Castillo HIM, Gutiérrez FGP (2013) Influence of modeling assumptions on the simulated EDM performance. In: Proceedings of the ASME 2013 international mechanical engineering congress & exposition IMECE2013Google Scholar
  52. 52.
    DiBitonto DD, Eubank PT, Patel MR, Barrufet MA (1989) Theoretical models of the electrical discharge machining process. I. A sample cathode erosion model. J Appl Phys 66(9):4095–4103.  https://doi.org/10.1063/1.343994 CrossRefGoogle Scholar
  53. 53.
    Xia H, Kunieda M, Nishiwaki N (1996) Removal amount difference between anode and cathode in EDM process. International Journal of Electrical Machining 1:45–52CrossRefGoogle Scholar
  54. 54.
    Singh H (2012) Experimental study of distribution of energy during EDM process for utilization in thermal models. Int J Heat Mass Transf 55(19–20):5053–5064.  https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.004 CrossRefGoogle Scholar
  55. 55.
    Revaz B, Emery J, Witz G, Flükiger R, Perez R, Carron J, Rappaz M (2005) Local temperature response to pulsed discharges in electronic discharge machining (EDM) environment. IEEE T Plasma Sci 33(3):1066–1071.  https://doi.org/10.1109/TPS.2005.848611 CrossRefGoogle Scholar
  56. 56.
    Klocke F, Schneider S, Mohammadnejad M, Hensgen L, Klink A (2017) Inverse simulation of heat source in electrical discharge machining (EDM). Proc CIRP 58:1–6.  https://doi.org/10.1016/j.procir.2017.03.178 CrossRefGoogle Scholar
  57. 57.
    Patel MR, Barrufet MA, Eubank PT, DiBitonto DD (1989) Theoretical models of the electrical discharge machining process. II. The anode erosion model. J Appl Phys 66(9):4104–4111.  https://doi.org/10.1063/1.343995 CrossRefGoogle Scholar
  58. 58.
    Ikai T, Hashiguchi K (1995) Heat input for crater formation in EDM. Paper presented at the 11th international symposium for electromachining, ISEM 11; Lausanne; Switzerland,Google Scholar
  59. 59.
    Shankar P, Jain VK, Sundararajan T (1997) Analysis of spark profiles during EDM process. Mach Sci Technol 1(2):195–217.  https://doi.org/10.1080/10940349708945647 CrossRefGoogle Scholar
  60. 60.
    Tariq Jilani S, Pandey PC (1982) Analysis and modelling of EDM parameters. Precis Eng 4(4):215–221.  https://doi.org/10.1016/0141-6359(82)90011-3 CrossRefGoogle Scholar
  61. 61.
    Liu JF, Guo YB (2016) Thermal modeling of EDM with progression of massive random electrical discharges. Procedia Manufacturing 5:495–507.  https://doi.org/10.1016/j.promfg.2016.08.041 CrossRefGoogle Scholar
  62. 62.
    International Atomic Energy Agency (2008) Thermophysical properties of materials for nuclear engineering: a tutorial and collection of data. IAEA, Vienna. ISBN 978-92-0-106508-7Google Scholar
  63. 63.
    Fousseny K (2012) Étude expérimentale, modélisation et simulation numérique de l’usinage à sec des aciers inoxydables: Étude de l’effet des revêtements mono et multi couches. Thesis prepared within the Laboratory LEMTA UMR CNRS 7563, University of Lorraine. October 2012. Publication authorized by the jury. URL: http://www.theses.fr/2012LORR0155
  64. 64.
    Dupas P, Waeckel F (1994) Recueil bibliographique de caractéristiques thermomécaniques pour l’acier de cuve, les revêtements inoxydables et les alliages 182 et 600, Rapport EDF/DER HI-74/93/097, HT-26/93/058AGoogle Scholar
  65. 65.
    Lionel D (2004) Simulation numérique du soudage–acier 316L validation sur cas tests de complexité croissante. Thesis prepared within the Laboratory of Research in Civil Engineering of the INSA, the national institute of applied sciences of Lyon. Id. No. 04 ISAL 0014. March 2004. Publication authorized by the juryGoogle Scholar
  66. 66.
    Sollier A (2002) Etude des Plasmas par Interaction Laser-matière en Régime Confiné. Application au Traitement des Matériaux par Choc-Laser, Thèse de doctorat, Université de Versailles, St. QuentinGoogle Scholar
  67. 67.
    Peyre P, Scherpereel X, Berthe L, Carboni C, Fabbro R, Béranger G, Lemaitre C (2000) Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Mater Sci Eng A 280(2):294–302.  https://doi.org/10.1016/S0921-5093(99)00698-X CrossRefGoogle Scholar
  68. 68.
    Descoeudres A (2006) Characterization of electrical discharge machining plasmas. Thesis Swiss Federal Institute of technology EPFL, No. 3542.  https://doi.org/10.5075/epfl-thesis-3542
  69. 69.
    Ning JI (1989) Application de l’Analyse des Profils de Raies de Diffraction X pour Caractériser l’Etat Microstructural et Mécanique des Matériaux Métalliques. Doctoral thesis Arts et Métiers ParisTech, France
  70. 70.
    Ben Moussa N, Sidhom H, Braham C (2012) Numerical and experimental analysis of residual stress and plastic strain distributions in machined stainless steel. Int J Mech Sci 64:82–93.  https://doi.org/10.1016/j.ijmecsci.2012.07.011 CrossRefGoogle Scholar
  71. 71.
    Laamouri A, Sidhom H, Braham C (2013) Evaluation of residual stress relaxation and its effect on fatigue strength of AISI 316L stainless steel ground surfaces: experimental and numerical approaches. Int J Fatigue 48:109–121.  https://doi.org/10.1016/j.ijfatigue.2012.10.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de Tunis, ENSIT, Laboratoire de Mécanique, Matériaux et ProcédésMontfleuryTunisia

Personalised recommendations