Simulation tool for prediction of cutting forces and surface quality of micro-milling processes

  • Klaus Schützer
  • Luciana Wasnievski da Silva de Luca Ramos
  • Jan Mewis
  • Marcelo Octavio TamborlinEmail author
  • Crhistian Raffaelo Baldo


The improvement of micro-milling processes implies the application of advanced analysis and modeling techniques to derive a deeper process understanding. Because of micro-scale effects, monitoring, and measurement systems applied in conventional milling are in most cases not suitable for identifying optimal cutting conditions. Therefore, analytical and mechanical models have been developed in recent years to account for impact factors dominating the micro-milling errors. Within the research presented in this publication, geometric, kinematic, and dynamic models have been adjusted and dimensioned according to the dominating impact factors in micro-milling and have been consolidated to enable for a time-domain simulation. The effect of element size of discretized workpiece and tool as well as the time step size on cutting forces has been evaluated. The accuracy of predicting cutting forces has been investigated and a good agreement of measured and simulated cutting forces has been found. Finally, a mold for a micro-fluidic device has been machined virtually and experimentally to evaluate the accuracy of the integrated models in predicting the final quality of a micro-milled part in terms of surface quality parameters.


Micro-milling Virtual machining Cutting forces Surface quality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ardila LKR, Ramos LWSL, Del Conte EG, Abackerli AJ, Picarelli TC, Perroni FAO, Schützer K, Mewis J, Uhlmann E (2015) Micro-milling process for manufacturing of microfluidic moulds, 23rd ABCM ICME. Proceedings of the 23rd ABCM International Congress of Mechanical Engineering, Rio de Janeiro, BrazilGoogle Scholar
  2. 2.
    Tosello G, Hansen NH, Gasparin S (2009) Applications of dimensional micro metrology to the product and process quality control in manufacturing of precision polymer micro components. Ann CIRP Manuf Technol 58:467–472CrossRefGoogle Scholar
  3. 3.
    Petz M, Tutsch R, Christoph R, Andraes M, Hopp B (2012) Tactile–optical probes for three-dimensional microparts. Measurement 45:2288–2298CrossRefGoogle Scholar
  4. 4.
    Hansen HN, da Costa Carneiro K, Haitjema H, De Chiffre L (2006) Dimensional micro and nano metrology. Ann CIRP 55(2):721–743CrossRefGoogle Scholar
  5. 5.
    Fleischer J, Lanza G, Schlipf M (2008) Statistical quality control in micro-manufacturing through multivariate μ-EWMA chart. Ann CIRP Manuf Technol 57(1):521–524CrossRefGoogle Scholar
  6. 6.
    Uhlmann E, Schauer K (2005) Dynamic load and strain analysis for the optimization of micro end mills. Ann CIRP 54(1):75–79CrossRefGoogle Scholar
  7. 7.
    Altintas Y, Jin X (2011) Mechanics of micro-milling with round edge tools. Ann CIRP Manuf Technol 60(1):77–80CrossRefGoogle Scholar
  8. 8.
    Biermann D, Krebs E, Sacharow A, Kersting P (2012) Using NC-path deformation for compensating tool deflections in micromilling of hardened steel, 5th CIRP conference on high performance cutting. Procedia CIRP 1:132–137CrossRefGoogle Scholar
  9. 9.
    Uhlmann E, Mahr F (2012) A time domain simulation approach for micro milling processes. 3rd CIRP conference on process machine interactions. Procedia CIRP 4:22–28CrossRefGoogle Scholar
  10. 10.
    Mamedov A, Layegh SE, Lazoglu I (2013) Machining forces and tool deflections in micro milling, 14th CIRP CMMO. Procedia CIRP 8:147–151CrossRefGoogle Scholar
  11. 11.
    Altintas Y (2016) Virtual high performance machining, 7th CIRP conference on high performance cutting. Procedia CIRP 46:372–378CrossRefGoogle Scholar
  12. 12.
    Uhlmann E, Kushwaha S, Mewis J, Richarz S (2017) Automatic design and synthesis of control for a plug and play active vibration control module. J Vib ControlGoogle Scholar
  13. 13.
    Uhlmann E, Abackerli AJ, Schützer K, Lepikson HA, Helleno AL, Papa MCO, del Conte EG, Mewis J (2014) Simulation and analysis of error impact on freeform surface milling. Int J Adv Manuf Technol 70(1–4):607–620CrossRefGoogle Scholar
  14. 14.
    Kienzle O, Victor H (1952) Die bestimmung von kräften und leistungen an spanenden werkzeugmaschinen. VDI-Z 94:299–305Google Scholar
  15. 15.
    Park SS, Altintas Y, Movahhedy M (2003) Receptance coupling for end mills. Int J Mach Tools Manuf 43:889–896CrossRefGoogle Scholar
  16. 16.
    Mascardelli B, Park SS, Freiheit T (2008) Substructure coupling of micro end mills to aid in the suppression of chatter. ASME J Manuf Sci Eng 130CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Klaus Schützer
    • 1
  • Luciana Wasnievski da Silva de Luca Ramos
    • 2
  • Jan Mewis
    • 3
  • Marcelo Octavio Tamborlin
    • 1
    Email author
  • Crhistian Raffaelo Baldo
    • 4
  1. 1.Universidade Metodista de Piracicaba - Lab. de Sistemas Computacionais para Projeto e ManufaturaSanta Barbara d’OesteBrazil
  2. 2.IPT Instituto de Pesquisas Tecnológicas - Núcleo de BionanomanufaturaSão PauloBrazil
  3. 3.Technische Universität Berlin - Institut für Werkzeugmaschinen und Fabrikbetrieb, Produktionstechnisches Zentrum (PTZ)BerlinGermany
  4. 4.Universidade Federal do ABC - Centro de Engenharia, Modelagem e Ciencias Sociais AplicadasSanto AndréBrazil

Personalised recommendations